| written 7.9 years ago by | • modified 7.8 years ago |
Subject: Applied Mathematics 2
Topic: Probability Distribution
Difficulty: High
| written 7.9 years ago by | • modified 7.8 years ago |
Subject: Applied Mathematics 2
Topic: Probability Distribution
Difficulty: High
| written 7.8 years ago by |
By definition moment generating function m.g.f. about origin is
M$_0$(t) = E(e$^{tX}$) = ∑p$_i$e$^{tx_i}$ = ∑$\frac{(e^{-m}×m^x)}{x!}$.e$^{tx}$ = e$^{-m}$ ∑$\frac{(me^t )^x}{x!}$ = e$^{-m}$ .e$^{me^t}$
[Note = ∑$\frac{k^x}{x!}$ = 1 + k + $\frac{k^2}{2!}$ + $\frac{k^3}{3!}$....................................]
Differentiating M$_0$(t) and putting t =0 ,we get the required moments
Now, [$\frac{\mathrm{d} }{\mathrm{d} t} M_0(t)]_{t=0}$ = e$^{m(e^t-1)}$.me$^t$
[$\frac{\mathrm{d} }{\mathrm{d} t} M_0(t)]_{t=0}$ = m
∴ mean = μ$_1'$= m
[$\frac{\mathrm{d^2} }{\mathrm{d} t^2} M_0(t)]_{t=0}$ = $m[ e^t .e^{m(e^t-1)}. me^t + e^{m(e^t-1)}. e^t]$
[$\frac{\mathrm{d^2} }{\mathrm{d} t^2} M_0(t)]_{t=0}$ = m(m+1) = μ$_2'$
Therefore variance = μ$_2'$ - [μ$_1'$]$^2$ = m$^2$ +m - m$^2$ = m