written 7.9 years ago by
teamques10
★ 70k
|
•
modified 7.9 years ago
|
$\text{(i) The null hypothesis H$_0$ : μ$_1$= μ$_2$. Alternative hypothesis H$_1$ :μ$_1$≠ μ$_2$}$
(ii) Calculation of test statistic:
S.E = $\sqrt{\frac{(s_1)^2}{n_1} +\frac{(s_2)^2}{n_2}}$
= $\sqrt{\frac{64}{32}+\frac{36}{36}}$ = 1.732;
Z = $\frac{(X_1-X_2)}{(S.E)}$ = $\frac{(72-70)}{1.732}$ = 1.15
$\text{(iii) Level of significance : α =0.01}$
$\text{(iv) Critical value : the value of Z$_α$ at 1% level of significance = 2.58}$
$\text{(v) Decision : since the calculated value of |Z| =1.15 is less than the table value Z$_α$=1.15. Therefore, the null hypothesis is accepted.}$