0
5.9kviews
Prove it is a case of possible steady incompressible fluid flow. Calculate the velocity and acceleration at a point (2, 1, 3)

A flow $U = x^2yi+yz^2j - (2xyz+yz^2)k$

Prove it is a case of possible steady incompressible fluid flow. Calculate the velocity and

acceleration at a point (2, 1, 3)

1 Answer
1
1.1kviews

$$ \vec{u}=x^{2} y \hat{\imath}+z y^{2} \hat{\jmath}-\left(2 x y z+y z^{2}\right) \hat{k} $$ For steady and Incompressible Flow, $\Rightarrow \frac{\partial\left(x^{2} y\right)}{\partial x}+\frac{\partial\left(y^{2} z\right)}{\partial y}-\frac{\partial\left(2 x y z+y z^{2}\right)}{\partial z}$ $\Rightarrow 2 x y+2 y z-2 x y-2 y z=0$ $u=x^{2} y=2^{2} \times 1=4 \mathrm{~m} / \mathrm{s}$ $v=y^{2} z=1^{2} \times 3=3 \mathrm{~m} …

Create a free account to keep reading this post.

and 4 others joined a min ago.

Please log in to add an answer.