Solution :
Given :
Diameter of pipe, $\quad D=3.0$
Radius, $\quad R=\frac{D}{2}=\frac{3.0}{2}=1.50 {~m}$
Bed slope, $\quad i=\frac{1}{1000}$
Chezy's constant, $\quad C=70$
1. Depth of water in pipe, d=1.0 m

From Figure, we have
$
\begin{aligned}
O C &=O D-C D=R-1.0 \\
O C &=O D-C D=R-1.0 \\
&=1.5-1.0=0.5 {~m} \\
A O &=R=1.5 {~m}
\end{aligned}
$
Also
$\begin{aligned}\cos \theta &=\frac{O C}{A O}=\frac{0.5}{1.5}=\frac{1}{3}\\
\therefore \quad \theta &=70.53^{\circ}=70.53 \times \frac{\pi}{180}\\ \end{aligned}$
$\quad\quad\quad =1.23 \mathrm {~radians} $
$$\quad\left(\because 180^{\circ} =\pi\right) \mathrm {~radians} $$
Wetted perimeter is given by following equation,
$\begin{aligned}
P &=2 R \theta=2 \times 1.5 \times 1.23 \\ &=3.69 \mathrm{~m}\end{aligned}$
Wetted Area (A),
$\begin{aligned}
A &=R^{2}\left(\theta-\frac{\sin 2 \theta}{2}\right) \\
& =1.5^{2}\left(1.23-\frac{\sin \left(2 \times 70.53^{\circ}\right)}{2}\right) \\
&=2.25\left(1.23-\frac{\sin \left (141.08^{\circ} \right)}{2}\right) \\
&=2.25 \left(1.23-\frac {\sin \left (180 ^{\circ} - 141.08^{\circ}\right)}{2}\right) \\
\quad &=2.25 \left(1.23-\frac{\sin 38.94^{\circ}}{2}\right)\\
&=2.06 {~m}^{2}
\end{aligned}$
Hydraulic mean depth (m),
$\begin{aligned}
m =\frac{A}{P}=\frac{2.06}{3.69} =0.5582{~ m}
\end{aligned}$
Discharge (Q),
$\begin {aligned}
Q &=AC \sqrt{mi}\\
&=2.06×70 \sqrt{0.5582 \times \frac{1}{1000}} \\
&=3.407 {~m}^{3} /{s}
\end{aligned}$
2. Depth of water in pipe, d = 2.5 m

From above Figure
$
\begin{aligned}
O C &=C D-O D=2.5-R \\
&=2.5-1.5=1.0 \mathrm{~m}\\O A &=R=1.5 \mathrm{~m} \\
\cos \alpha &=\frac{O C}{OA}=\frac{1.0}{1.5}=0.667\\
\alpha &=48.16^{\circ} \\
\theta &=180^{\circ}-\alpha \\
&=180 ^{\circ} -48.16^ {\circ} \\
&=131.84^{\circ} \\
&=131.84 \times \frac{\pi}{180}=2.30 \mathrm{~radians}
\end{aligned}
$
Wetted perimeter is given by following equation,
$\begin{aligned}
P &=2 R \theta=2 \times 1.5 \times 2.3 \\ &=6.9 \mathrm{~m}\end{aligned}$
Wetted Area (A),
$
\begin{aligned}
A &=R^{2}\left(\theta-\frac{\sin 2 \theta}{2}\right)\\
&=1.5^{2}\left(2.30-\frac{\sin \left(2 \times 131.84^{\circ}\right)}{2}\right) \\
&=2.25\left(2.30-\frac{\sin 263.68^{\circ}}{2}\right) \\
&=2.25\left(2.30-\frac{\sin \left(180^{\circ}+83.68^{\circ}\right)}{2}\right) \\
&=2.25\left[2.30-\frac{\left(-\sin 83.58^{\circ}\right)}{2}\right] \\
&=2.25\left(2.30+\frac{\sin 83.68^{\circ}}{2}\right)\\
&=6.293 \mathrm{~m}^{2} \\
\end{aligned}
$
Hydraulic mean depth,
$ \begin {aligned} m=\frac{A}{P}=\frac{6.293}{6.90}=0.912 \mathrm{~m}
\end{aligned}$
Discharge (Q),
$\begin {aligned}
Q &=AC \sqrt{mi}\\
&=6.239×70 \sqrt{0.912 \times \frac{1}{1000}} \\
&=13.303 {~m}^{3} /{s}
\end{aligned}$
Final Answers
When d=1.0 m then $Q=3.407 {~m}^{3} /{s}$
When d=2.5 m then $Q =13.303 {~m}^{3} /{s}$