0
1.5kviews
Solve $\left[x\sqrt{x^2+y^2}\right]dx+\left[y\sqrt{x^2+y^2}\right]dy=0$ .
1 Answer
| written 7.8 years ago by |
This is of the form $Mdx+Ndy=0$
$$ M=x\sqrt{x^2+y^2}-y \\ N=y\sqrt{x^2+y^2}-x$$
$$\frac{\partial{M}}{\partial{y}}=\frac{x}{2\sqrt{x^2+y^2}}2y-1$$
$$\frac{\partial{M}}{\partial{x}}=\frac{y}{2\sqrt{x^2+y^2}}2x-1$$
$$\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}$$
The given Equation is an exact differential equation.
Solution is given by
$$ \int Mdx+\int(Terms\ in\ N\ not\ containing\ x)dy=c\\ y=constant \\ \int\left( x\sqrt{x^2+y^2}\right)dx+0=c$$
Put $x^2+y^2=t$
$\therefore 2xdx=dt$
$$ \int \sqrt{t}dt-(y)dx+0=c \\ \frac{1}{2}\frac{t^{\frac{3}{2}}}{\frac{3}{2}}-xy=c \\ \frac{\left( x^2+y^2\right)^\frac{3}{2}}{3}-xy=c$$