| written 7.8 years ago by | • modified 3.9 years ago |
Subject : Structural Analysis 1
Topic : Deflection of beam
Difficulty : High

| written 7.8 years ago by | • modified 3.9 years ago |
Subject : Structural Analysis 1
Topic : Deflection of beam
Difficulty : High

| written 7.8 years ago by | • modified 7.6 years ago |
1. Support reaction calculation:
$ \sum M_A=0(\circlearrowright+ve)\\ 50\times4-V_B\times5.5=0\\ \boxed{V_B=36.36\ kN}(\uparrow)\\ \\ \sum F_Y=0(\uparrow +ve)\\ V_A-50+36.36=0\\ \boxed{V_A=13.64}(\uparrow)$
2. Draw BMD$[\circlearrowright|\circlearrowleft+ve]$
$ B.M_A=0\\ B.M_C=13.64\times2=27.28\ kNm\\ B.M_D=36.36\times1.5=54..54\ kNm\\ B.M_B=0$

3. Draw $\frac{M}{EI}$ diagram

4. Draw conjugate beam and consider $\frac{M}{EI}$ diagram as loading on the beam

$ \sum M_A=0(\circlearrowright+ve)\\ \left( \frac{1}{2}\times2\times\frac{27.28}{EI} \right) \left( …