(i) For characteristic equation |A - $\lambda$ I| = 0
$$
\begin{vmatrix}
2-\lambda&-1& 1 \\
1& 2-\lambda &-1 \\
1&-1& 2-\lambda
\end{vmatrix}
= 0
$$
$\lambda^3$ - (Sum of diagonal elements)$\lambda^2$ + (Sum of Principal minors)$\lambda$ - |A| = 0
$
\lambda^3 - (6)\lambda^2 + (3+3+5)\lambda - 6 = 0 \\
\lambda^3 - 6\lambda^2 + 11 \lambda - 6 = 0 \\
(\lambda - 1)(\lambda - 2)(\lambda - 3) = 0
$
Therefore, eigen values are $\lambda$ = 1,2,3.
To find Eigen vectors of A
case(i): $\lambda$ = 1
$$
\begin{bmatrix}
A - \lambda I
\end{bmatrix}
\begin{bmatrix}
X
\end{bmatrix}
= 0 \\
\begin{bmatrix}
2-\lambda&-1& 1 \\
1& 2-\lambda &-1 \\
1&-1& 2-\lambda
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \\
\begin{bmatrix}
2-1&-1& 1 \\
1& 2-1&-1 \\
1&-1& 2-1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\\
\begin{bmatrix}
1&-1& 1 \\
1&1&-1 \\
1&-1& 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
By Crammer's rule,
$ \frac{x_1}{0} = -\frac{x_2}{2} = \frac{x_3}{-2} \\
\therefore \frac{x_1}{0} = -\frac{x_2}{1} = \frac{x_3}{1}$
$$
X_1 =
\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}
$$
case(ii): $\lambda$ = 2
$$
\begin{bmatrix}
A - \lambda I
\end{bmatrix}
\begin{bmatrix}
X
\end{bmatrix}
= 0 \\
\begin{bmatrix}
0&-1& 1 \\
1&0&-1 \\
1&-1& 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
By Crammer's rule,
$
\frac{x_1}{-1} = \frac{-x_2}{1} = \frac{x_3}{-1} \\
\therefore \frac{x_1}{-1} = \frac{x_2}{-1} = \frac{x_3}{-1}
$
$$
X_2 =
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
$$
case (iii): $\lambda$ = 3
$$
\begin{bmatrix}
A - \lambda I
\end{bmatrix}
\begin{bmatrix}
X
\end{bmatrix}
= 0 \\
\begin{bmatrix}
-1&-1& 1 \\
1&-1&-1 \\
1&-1& -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$
\frac{x_1}{2} = \frac{-x_2}{0} = \frac{x_3}{2} \\
\therefore \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}
$
$$
X_3 =
\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}
$$
Therefore, the three eigen vectors are:
$
X_1 =
\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}
\hspace{0.5cm}
X_2 =
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\hspace{0.5cm}
X_3 =
\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}
$
(ii)
$ A =
\begin{bmatrix}
2&2&1 \\
1&3&1 \\
1&2&2
\end{bmatrix}
$
For characteristic equation, |A - $\lambda$ I| = 0
$$
\begin{vmatrix}
2-\lambda&2& 1 \\
1& 3-\lambda &1 \\
1&2& 2-\lambda
\end{vmatrix}
= 0
$$
$\lambda^3$ - (Sum of diagonal elements)$\lambda^2$ + (Sum of Principal minors)$\lambda$ - |A| = 0
$
\lambda^3 - (7)\lambda^2 + (4+3+4)\lambda - 5 = 0 \\
\lambda^3 - 7 \lambda^2 + 11 \lambda - 5 = 0 \\
(\lambda - 1)(\lambda - 1)(\lambda - 5) = 0
$
Therefore, eigen values are $\lambda$ = 1,1,5.
For eigen vectors,
$$
\begin{bmatrix}
A - \lambda I
\end{bmatrix}
\begin{bmatrix}
X
\end{bmatrix}
= 0 \\
\begin{bmatrix}
2-\lambda&2& 1 \\
1& 3-\lambda &1 \\
1&2& 2-\lambda
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
case(i) $\lambda$ = 5
$$
\begin{bmatrix}
-3&2& 1 \\
1& -2 &1 \\
1&2& -3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$
\frac{x_1}{4} = \frac{-x_2}{-4} = \frac{x_3}{4} \\
\therefore \frac{x_1}{1} = \frac{x_2}{1} = \frac{x_3}{1}
$
$$
X_1 =
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
$$
case(ii) $\lambda$ = 1
$$
\begin{bmatrix}
2-1&2& 1 \\
1& 3-1 &1 \\
1&2& 2-1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$$
\begin{bmatrix}
1& 2 & 1 \\
1& 2 &1 \\
1&2& 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$ x_1 + 2x_2 + x_3 = 0 $
[Note: Since rows are repeated, Crammer's rule is not applicable]
A is non-symmetric.
Put $ x_3 = 0; \hspace{0.5cm} x_1 + 2x_2 = 0 $
Put $ x_2 = 1; \hspace{0.5cm} x_1 = -1$
$$
\therefore X_2 =
\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}
$$
case(iii) $\lambda$ = 1
Put x$_2$ = 0
x$_1$ + x$_3$ = 0
x$_1$ = - x$_3$
Put x$_3$ = 1
x$_1$ = -1
$$
X_3 =
\begin{bmatrix}
-1 \\
0 \\
1 \\
\end{bmatrix}
$$
(iii) A =
$
\begin{bmatrix}
6&-2& 2 \\
-2& 3&-1 \\
2&-1& 3
\end{bmatrix}
$
For characteristic equation |A - $\lambda$ I| = 0
$$
\begin{vmatrix}
6-\lambda&-2& 2 \\
-2& 3-\lambda &-1 \\
2&-1& 3-\lambda
\end{vmatrix}
= 0
$$
$\lambda^3$ - (Sum of diagonal elements)$\lambda^2$ + (Sum of Principal minors)$\lambda$ - |A| = 0
$
\lambda^3 - (12)\lambda^2 + (8+14+14)\lambda - 32 = 0 \\
\lambda^3 - 12 \lambda^2 + 36 \lambda - 32 = 0 \\
(\lambda - 2)(\lambda - 2)(\lambda - 8) = 0
$
Therefore, eigen values are $\lambda$ = 2,2,8.
For eigen vectors,
$$
\begin{bmatrix}
A - \lambda I
\end{bmatrix}
\begin{bmatrix}
X
\end{bmatrix}
= 0
$$
case(i) $\lambda$ = 8
$$
\begin{bmatrix}
-2&-2& 2 \\
-2& -5&-1 \\
2&-1&-5\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
By Crammer's rule,
$
\frac{x_1}{24} = \frac{-x_2}{12} = \frac{x_3}{12} \\
\therefore \frac{x_1}{2} = \frac{x_2}{-1} = \frac{x_3}{1}
$
$$
X_1 =
\begin{bmatrix}
2 \\
-1 \\
1
\end{bmatrix}
$$
Case(ii) $\lambda$ = 2
$$
\begin{bmatrix}
4&-2& 2 \\
-2& 1&-1 \\
2&-1&1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$$
\begin{bmatrix}
2&-1& 1 \\
-2& 1&-1 \\
2&-1&1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$ 2x_1 - x_2 + x+3 = 0 $
Put x$_3$ = 0
x$_2$ =2
2x$_1$ = 2
x$_1$ = 1
$$
X_2 =
\begin{bmatrix}
1 \\
2 \\
0 \\
\end{bmatrix}
$$
case(iii) $\lambda$ = 2
Note: If A is symmetric then the eigen vectors are orthogonal to each others.
Here, A is symmetric
$ X_1X_3^T = 0 \\
X_2X_3^T = 0 $
Let, $ X_3 = \begin{bmatrix}
l \\
m \\
n
\end{bmatrix} $ be the third eigen vector
$ \begin{bmatrix}
2 \\
-1 \\
1
\end{bmatrix}
\begin{bmatrix}
l & m & n
\end{bmatrix}
= 0
\hspace{1cm}
\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}
\begin{bmatrix}
l & m & n
\end{bmatrix}
= 0
$
$ 2l - m + n = 0 \hspace{1cm} l + 2m + 0n = 0 $
By Creammer's rule
$ \frac{l}{-2} = \frac{m}{1} = \frac{n}{5} $
$$
X_3 =
\begin{bmatrix}
-2 \\
1 \\
5
\end{bmatrix}
$$