A = $
\begin{bmatrix}
8&-8&-2 \\
4&-3&-2 \\
3&-4& 1
\end{bmatrix}
$
For characteristic equation |A - $\lambda$ I| = 0
$$
\begin{vmatrix}
8-\lambda&-8& -2 \\
4& -3-\lambda &-2 \\
3&-4& 1-\lambda
\end{vmatrix}
= 0
$$
$\lambda^3$ - (Sum of diagonal elements)$\lambda^2$ + (Sum of Principal minors)$\lambda$ - |A| = 0
$
\lambda^3 - (8-3+1)\lambda^2 + (-11+14+8)\lambda - 6 = 0 \\
\lambda^3 - 6\lambda^2 + 11 \lambda - 6 = 0 \\
(\lambda - 1)(\lambda - 2)(\lambda - 3) = 0
$
Therefore, eigen values are $\lambda$ = 1,2,3.
Eigen Values of A: 1,2,3
Eigen values of A$^2$: 1,4,9
Eigen values of I: 1,1,1
Eigen values of A$^2$ + 2I: 1+2, 4+2, 9+2 = 3,6,11
Note:
For Eigen vector
Eigen vectors of A$^2$ + 2I is same as Eigen vector of A.
For eigen vectors of A,
$$
\begin{bmatrix}
A - \lambda I
\end{bmatrix}
\begin{bmatrix}
X
\end{bmatrix}
= 0 \\
\begin{bmatrix}
8-\lambda&-8& -2 \\
4& -3-\lambda &-2 \\
3&-4& 1-\lambda
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
case(i) $\lambda$ = 1
$$
\begin{bmatrix}
8-1 &-8& -2 \\
4& -3-1&-2 \\
3&-4& 1-1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$$
\begin{bmatrix}
7 &-8& -2 \\
4& -4&-2 \\
3&-4& 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
By Crammer's rule,
$
\frac{x_1}{-8} = \frac{-x_2}{6} = \frac{x_3}{-4} \\
\therefore \frac{x_1}{4} = \frac{x_2}{3} = \frac{x_3}{2}
$
$$
X_1 =
\begin{bmatrix}
4 \\
3 \\
2
\end{bmatrix}
$$
case(ii) $\lambda$ = 2
$$
\begin{bmatrix}
8-2 &-8& -2 \\
4& -3-2&-2 \\
3&-4& 1-2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$$
\begin{bmatrix}
6&-8& -2 \\
4& -5&-2 \\
3&-4& -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$
\frac{x_1}{-3} = \frac{-x_2}{2} = \frac{x_3}{-1} \\
\therefore \frac{x_1}{3} = \frac{x_2}{2} = \frac{x_3}{1}
$
$$
X_2 =
\begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix}
$$
Case(iii) $\lambda$ = 3
$$
\begin{bmatrix}
8-3 &-8& -2 \\
4& -3-3&-2 \\
3&-4& 1-3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$$
\begin{bmatrix}
5&-8& -2 \\
4& -6 &-2 \\
3&-4& -2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
$
\frac{x_1}{4} = \frac{-x_2}{-2} = \frac{x_3}{2} \\
\therefore \frac{x_1}{2} = \frac{x_2}{1} = \frac{x_3}{1}
$
$$
X_3 =
\begin{bmatrix}
2 \\
1 \\
1
\end{bmatrix}
$$
Therefore Eigen vectors of A$^2$ + 2I are:
$
X_1 =
\begin{bmatrix}
4 \\
3 \\
2
\end{bmatrix}
\hspace{1cm}
X_2 =
\begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix}
\hspace{1cm}
X_3 =
\begin{bmatrix}
2 \\
1 \\
1
\end{bmatrix}
$