| written 7.8 years ago by | • modified 3.9 years ago |
Verify Cayley – Hamilton theorm for A = $\begin{bmatrix} 1& 2&-2 \\ -1& 3& 0 \\ 0&-2& 1 \end{bmatrix} $. Also find A$^{-1}$
Subject: Applied Mathematics 4
Topic: Matrix Theory
Difficulty: Medium
| written 7.8 years ago by | • modified 3.9 years ago |
Verify Cayley – Hamilton theorm for A = $\begin{bmatrix} 1& 2&-2 \\ -1& 3& 0 \\ 0&-2& 1 \end{bmatrix} $. Also find A$^{-1}$
Subject: Applied Mathematics 4
Topic: Matrix Theory
Difficulty: Medium
| written 7.5 years ago by |
A = $\begin{bmatrix} 1& 2&-2 \\ -1& 3& 0 \\ 0&-2& 1 \end{bmatrix} $
For characteristic equation |A - $\lambda$ I| = 0
$$ \begin{vmatrix} 1-\lambda&2& -2 \\ -1& 3-\lambda &0 \\ 0&-2& 1-\lambda \end{vmatrix} = 0 $$
$\lambda^3$ - (Sum of diagonal elements)$\lambda^2$ + (Sum of Principal minors)$\lambda$ - |A| = 0
$ \lambda^3 - (1+3+1)\lambda^2 + (3+1+5)\lambda - 1 = 0 \\ \lambda^3 - 5 \lambda^2 + 9 \lambda - 1 = 0 $
By Cayley Hamilton theorem, $ A^3 - 5 A^2 + 9 A - I = 0 $ ...(1)
Consider, $ A^3 - 5 A^2 + 9 A - I $
$ = \begin{bmatrix} -13 & 42 & -2 \\ -11 & 9 & 10 \\ 10 & -22 & -3 \end{bmatrix} -5 \begin{bmatrix} -1 & 12 & -4 \\ -4 & 7 & 2 \\ 2 & -8 & 1 \end{bmatrix} +9 \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0 $
Hence, Cayley Hamilton theorem is verified
Pre-multiply both sides of (1) by A$^{-1}$
$ A^{-1} (A^3 - 5 A^2 + 9 A - I) = 0 \\ A^2 -5A +9I - A^{-1} = 0 \\ A^{-1} = A^2 -5A +9I \\ = \begin{bmatrix} -1 & 12 & -4 \\ -4 & 7 & 2 \\ 2 & -8 & 1 \end{bmatrix} -5 \begin{bmatrix} 1& 2&-2 \\ -1& 3& 0 \\ 0&-2& 1 \end{bmatrix} + \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} \\ = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} $