written 7.5 years ago by
teamques10
★ 70k
|
•
modified 7.5 years ago
|
For characteristic equation |A - $\lambda$ I| = 0
$$
\begin{vmatrix}
1&3&7 \\
4&2&3 \\
1&2&1
\end{vmatrix}
= 0
$$
$\lambda^3$ - (Sum of diagonal elements)$\lambda^2$ + (Sum of Principal minors)$\lambda$ - |A| = 0
$
\lambda^3 - (1+2+1)\lambda^2 + (-4-6-10)\lambda - 35 = 0 \\
\lambda^3 - 4 \lambda^2 + 20 \lambda - 35 = 0
$
By Cayley-Hamilton theorem
$ A^3 - 4 A^2 + 20 A - 35I = 0 $
Consider,
$ A^7 -4A^6 -20A^5 - 34A^4 - 4A^3 - 20A^2 - 33A + I $
$
= A^4(A^3 - 4A^2 - 20A - 34I) - 4A^3 - 20A^2 - 33A + I \\
= A^4(A^3 - 4A^2 - 20A - 35I + I) + A^4 - 4A^3 - 20A^2 - 33A + I \\
= A^4(0) + A^4 - 4A^3 - 20A^2 - 33A + I \\
= A(A^3 - 4A^2 - 20A - 33I) + I \\
= A(A^3 - 4A^2 - 20A - 35I) + 2A + I \\
= A(0) + 2A + I \\
= 2A + I \\
= 2
\begin{bmatrix}
1&3&7 \\
4&2&3 \\
1&2&1
\end{bmatrix}
+
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \\
=
\begin{bmatrix}
3 & 6 & 14 \\
8 & 5 & 6 \\
2 & 4 & 3
\end{bmatrix}
$