Change of scale: u = x - 140; v = y - 66
| x |
y |
u=x-140 |
v=y-66 |
uv |
u$^2$ |
v$^2$ |
| 100 |
45 |
-40 |
-21 |
840 |
1600 |
441 |
| 110 |
51 |
-30 |
-15 |
4540 |
900 |
225 |
| 120 |
54 |
-20 |
-12 |
240 |
400 |
144 |
| 130 |
61 |
-10 |
-5 |
50 |
100 |
25 |
| 140 |
66 |
0 |
0 |
0 |
0 |
0 |
| 150 |
70 |
10 |
4 |
40 |
100 |
16 |
| 160 |
74 |
20 |
8 |
160 |
400 |
64 |
| 170 |
78 |
30 |
12 |
360 |
900 |
144 |
| 180 |
85 |
40 |
19 |
760 |
1600 |
361 |
| 190 |
89 |
50 |
23 |
1150 |
2500 |
529 |
|
|
50 |
13 |
4050 |
8500 |
1949 |
$
\bar{u} = \frac{1}{n} (\sum u) = \frac{1}{10}(50) = 5 \\
\bar{v} = \frac{1}{n} (\sum v) = \frac{1}{10}(13) = 1.3 \\
\sigma_u^2 = \frac{1}{n} (\sum u^2) - (\bar{u})^2 = \frac{1}{10}(8500) - (5^2) = 825 \\
\sigma_u = 28.7228 \\
\sigma_v^2 = \frac{1}{n} (\sum v^2) - (\bar{v})^2 = \frac{1}{10}(1949) - (1.3)^2 = 194.9 - 1.69 = 193.21 \\
\sigma_v = 13.9 \\
cov(u,v) = \frac{1}{n}(\sum uv) - \bar{u}\bar{v} \\
= \frac{1}{10}(4050) - (5)(1.3) \\
= 405 - 6.5 = 398.5
$
$ r_{uv} = \frac{cov(u,v)}{\sigma_u \sigma_v} = \frac{398.5}{(28.7228)}(13.9) = 0.998129 \\
\implies r = r_{xy} = r_{uv} = 0.998129 $
$ b_{uv} = r \frac{\sigma_u}{\sigma_v} = 0.998129 \times \frac{28.7228}{13.9} = 2.0625 \\
\implies b_{xy} = b_{uv} = 2.0625 $
$
b_{vu} = r \frac{\sigma_v}{\sigma_u} = 0.998129 \times \frac{13.9}{28.7228} = 0.48303 \\
\implies b_{yx} = b_{vu} = 0.48303
$
$
u = x - 140 \\
\bar{u} = \bar{x} - 140 \\
\implies \bar{x} = \bar{u} + 140 = 5 + 140 = 145 \\
v = y - 66 \\
\bar{v} = \bar{y} - 66 \\
\bar{y} = \bar{v} + 66 \\
\implies \bar{y} = 1.3 + 66 = 67.3
$
There are two equations of lines of regression:
(i) Equation of line of regression of 'y' on 'x' is given by:
$
(y - \bar{y}) = byx(x - \bar{x}) \\
(y - 67.3) = (0.48303)(x - 145) \\
y - 67.3 = 0.48303x - 70.0393 \\
\implies y = 0.48303x - 2.73935
$
(ii) Equation of line of regression of 'x' on 'y' is:
$
(x - \bar{x}) = bxy(y - \bar{y}) \\
(x - 145) = (2.0625)(y - 67.3) \\
x - 145 = 2.0625y - 138.80625 \\
\implies x = 2.0625y + 6.19375
$