written 7.6 years ago by
teamques10
★ 70k
|
•
modified 7.6 years ago
|
For continuous Random variables
$ \int_{-\infty}^{\infty} f(x) \,\,dx = 1 \\
\int_0^{\infty} kx e^{-x/3} \,\, dx = 1 \\
k \int_0^{\infty} x e^{-x/3} \,\, dx = 1 \\
k[x (\frac{e^{-x/3}}{-1/3}) - 1 \frac{e^{-x/3}}{(-1/3)^2}]_0^{\infty} = 1 \\
k [(-3x e^{-x/3}) - (9e^{-x/3})]_0^{\infty} = 1 \\
k(9) = 1 \implies k = \frac{1}{9} $
$ E(X) = \int_{-\infty}^{\infty} xf(x) \,\,dx = \int_0^{\infty} x(kx e^{-x/3}) \,\, dx \\
\int_0^{\infty} (kx^2 e^{-x/3}) \,\, dx \\
= k [x^2 \frac{e^{-x/3}}{-1/3} - 2x \frac{e^{-x/3}}{(-1/3)^2} + 2 \frac{e^{-x/3}}{(-1/3)^3}]_0^{\infty} \\
= k(54) = \frac{1}{9}(54) = 6 $
To find
$ P(X \gt 6) = \int_6^{\infty} f(x)dx = \int_6^{\infty} kx e^{-x/3} \,\, dx \\
k \int_6^{\infty} x e^{-x/3} \,\, dx \\
k [x \frac{e^{-x/3}}{-1/3} - \frac{e^{-x/3}}{(-1/3)^2}]_6^{\infty} \\
= k [-3x e^{-x/3} - 9(e^{-x/3})]_6^{\infty} \\
= k (18 e^{-2} + 9 e^{-2}) = \frac{1}{9} (27 e^{-2}) = 3 e^{-2} = 0.4060 $