| written 7.8 years ago by | • modified 3.9 years ago |
Question (contd.) carries a load of 80 kN ata n eccentricity of 25mm from the column axis. Take E = 200GPa
Subject : Structural Analysis 1
Topic : Struts
Difficulty : High
| written 7.8 years ago by | • modified 3.9 years ago |
Question (contd.) carries a load of 80 kN ata n eccentricity of 25mm from the column axis. Take E = 200GPa
Subject : Structural Analysis 1
Topic : Struts
Difficulty : High
| written 7.8 years ago by | • modified 7.6 years ago |

Given data:
$ D=200mm\\ d=160mm\\ L=6m \\ t=20mm \\ P=80\ kN\\ eccentricity\ e=25mm\\ E=200GPa=2\times10^5MPa$
To find: $\underline{Extreme Stress}$
$Area\ of\ column,\ A=\frac{\pi}{4}(D^2-d^2)\\ = \frac{\pi}{4}(200^2=160^2)\\\underline{A=11309.73 mm^2}\\ I=\frac{\pi}{64}(D^4-d^4)=\frac{\pi}{64}(200^4-160^4)=46.36\times10^6mm\\ z=\frac{I}{y}=\frac{46.36\times10^6}{100}=463.6\times10^3mm^3 $
Since the column is fixed at both ends
$ L_{eff}=L=6000mm\\ L_{eff}=\frac{L}{2}=3000mm$
$\underline{Extreme\ Stresses:}$
Maximum bending moment =
p.e. sec$\left( \frac{L}{2}\sqrt{\frac{P}{EI}}\right) $
Determine …