written 6.7 years ago by | • modified 3.3 years ago |
Subject: Applied Mathematics 4
Topic: Matrices
Difficulty: Low
written 6.7 years ago by | • modified 3.3 years ago |
Subject: Applied Mathematics 4
Topic: Matrices
Difficulty: Low
written 6.7 years ago by |
Let $\lambda$ be an eigen value of $A^n$.
Then there exists $X\neq0$ such that
$(A-\lambda I)X=0$
$AX-\lambda X=0$
$AX= \lambda X$ (1)
Post multiplying by A we get,
$A^2X=\lambda A X$
$A^2X=\lambda \lambda X$ from (1)
$A^2X=\lambda^2 X$
$\lambda^2$ is eigen value of $A^2$ and eigen vector corresponding to $\lambda^2$ is X.
Again pre multiplying by A,
$A^3X=\lambda^2 A X$
$A^3X=\lambda^2 \lambda X$
$A^3X=\lambda^3 X$
$\lambda^3$ is eigen value of $A^3$ and X is corresponding eigen vector. If we proceed in same manner then, we get,
$A^nX=\lambda^nX$
$\lambda^n$ is eigen value of $A^n$ and X is corresponding eigen vector.