Given:- $M_{1}$=29.8gm

$M_{d}$=19gm

$v_{1}=17.7cm^{3}$

$v_{d}=8.9 cm^{3}$

$m_{w}=m_{1}-m_{d}$=29.8-19=10.8gm

$V_{w}=volume occupied by water=10.8cm^{3}$

$v_{s}, volume occupied by solids=17.7-10.8=6.9cm^{3}$

$W_{1}=\frac{m_{w}}{m_{d}}$=$\frac{10.8}{19}\times 100$=56.84%

G=$\frac{s_{s}}{s_{w}}=\frac{m_{s}/v_{s}}{s_{w}}=\frac{19/6.9}{y}$=2.76

on drying $v_{w}=8.9-6.8=2cm^{3}$

Shrinking limit, w_{s}=\frac{m_{w}}{m_{d}}

=$\frac{2}{19}\times 100$=10.53

SR=$\frac{\frac{(v_{1}-v_{2})}{v_{2}}\times 100}{w_{1}-w_{s}}$

$\frac{\frac{(177-89)}{8.9}\times 100}{(56.84-10.63)}$

SR=213.49

Vs=$\frac{SR(w_{1}-w_{s})}{100}=\frac{219.49(56.84-10.53)}{100}$

Vs=98.64