| written 7.3 years ago by | • modified 4.0 years ago |
Subject:- Structural Analysis II
Title:- Flexibility Method
Difficulty:- Hard

| written 7.3 years ago by | • modified 4.0 years ago |
Subject:- Structural Analysis II
Title:- Flexibility Method
Difficulty:- Hard

| written 7.3 years ago by |

M-3 Analysis
Table :-
| Part | origin | limit | $M_1 | M_2 | M_3$ | ||
|---|---|---|---|---|---|
| AB | A | 0-4 | -0.25x+1 | -1x | -0.25x |
| BC | C | 0-4 | 0 | -1x | -1 |
2) Flexibility Coefficient:-
$f_{11} = \int_{0}^{l} \frac{(M_1)^2}{EI}$dx
= $\int_{0}^{4} \frac{(-0.25x+1)^2}{EI}dx = \frac{1.33}{EI}$
$f_{22} = \int_{0}^{l} \frac{(M_2)^2}{EI}$dx
= $\frac{1}{EI} \int_{0}^{4} (-1x)^2dx + \frac{1}{EI} \int_{0}^{4} (-1x)^2dx = \frac{42.67}{EI}$
$f_{33} = \int_{0}^{l} \frac{(M_3)^2}{EI}$dx
= $\frac{1}{EI} \int_{0}^{4} (-0.25x)^2dx + \frac{1}{EI} \int_{0}^{4} (-1)^2dx = \frac{5.33}{EI}$
$f_{12} = f_{21} = \int_{0}^{4} \frac{(-0.25x+1)(-1x)}{EI}dx$
$f_{12} = f_{21} = \frac{-2.67}{EI}$
$f_{13} = f_{31} = \int_{0}^{4} \frac{(-0.25x+1)(-0.25x)}{EI}dx$
$f_{13} = f_{31} = \frac{-0.67}{EI}$
$f_{23} = f_{32} = \int_{0}^{4} \frac{(-0.25x)(-1x)}{EI}dx + \int_{0}^{4} \frac{(-1x)(-1)}{EI}$
$f_{23} = f_{32} = \frac{13.33}{EI}$