written 5.6 years ago by | • modified 4.6 years ago |

1.$H1(z) = 6 + z^(-1) +6z^{-2}$

2.$H2(z) = 1 - z^{-1} - 6z^{-2}$

3.$H3(z) = 1 - \frac{5}{2} z^{-1} - \frac{3}{2} z^{-2}$

4.$H4(z) = 1 - \frac{5}{2} z^{-1} - \frac{2}{3} z^{-2}$

**1 Answer**

0

1.6kviews

Determine the zeros of the following FIR systems and Identify whether the following system is minimum phase, maximum phase, mixed phase. Also comment on stability.

written 5.6 years ago by | • modified 4.6 years ago |

1.$H1(z) = 6 + z^(-1) +6z^{-2}$

2.$H2(z) = 1 - z^{-1} - 6z^{-2}$

3.$H3(z) = 1 - \frac{5}{2} z^{-1} - \frac{3}{2} z^{-2}$

4.$H4(z) = 1 - \frac{5}{2} z^{-1} - \frac{2}{3} z^{-2}$

ADD COMMENT
EDIT

0

47views

written 5.6 years ago by |

i) $H(z)=6+z^{-1}+6z^{-2}$

$=6+\frac{1}{z}+\frac{6}{z^2}$

$=\frac{(6z^2+z+6)}{z^2}$

*Poles: 0, 0*

Zeros:-0.08±0.99j

$z_1=0.99 ∠ 85.38°$

$z_2=0.99 ∠ 85.38°$

Both the zeros lie inside the unit circle, poles are also at origin. Hence , the system is “Stable Minimum phase”

ii)$ H_2 (z)=1-z^{-1}-6z^{-2}$

$=1-\frac{1}{z}-\frac{6}{z^2}$

$=\frac{(z^2-z-6)}{z^2}$

Poles: 0, 0 Zeros: 3, -2

Both the zeros lie outside the unit circle, poles are at origin. Hence, the system is “Stable Maximum Phase”

iii)$ H_3 (z)=1-\frac{5}{2 z^{-1}}-\frac{3}{2 z^{-2}}$

$=1-\frac{5}{2z}-\frac{3}{2z^2 }$

$=\frac{z^2-\frac{5}{2 z}-\frac{3}{2}}{z^2}$

Poles: 0, 0 Zero: 3, -0.5

One of the zero is inside the unit circle and other is outside the unit circle and poles are at origin. Hence the system is “Stable Mixed Phase”

iv) $H_4 (z)=1-\frac{5}{2 z^{-1}}-\frac{2}{3 z^{-2}}$

$=1-\frac{5}{2z}-\frac{2}{3z}$

$=\frac{z^2-\frac{5}{2z}-\frac{2}{3}}{z^2}$

Poles: 0, 0 Zeros: 2.74, -0.24

One of the zero is inside the unit circle and other one is outside the unit circle and poles are at origin. Hence, the system is “Stable Mixed Phase”.

ADD COMMENT
EDIT

Please log in to add an answer.