0
882views
1]e) Express the matrix as the sum of symmetric and skew symmetric matrices.

Subject:- Applied Mathematics

Marks:- 3

Mumbai Unversity>FE>Sem1>Applied Maths1

1 Answer
0
2views

A =$ \begin{bmatrix} 1 & 0 & 5 & 3 \\ -2 & 1 & 6 & 1 \\ 3 & 2 & 7 & 1 \\ 4 & -4 & 2 & 0 \end{bmatrix} $A’ =$ \begin{bmatrix} 1 & -2 & 3 & 4 \\ 0 & 1 & 2 & -4 \\ 5 & 6 & 7 & 2 \\ 3 & 1 & 1 & 0 \end{bmatrix} $

$\frac{1}{2} (A+A’)$ = $\frac{1}{2}$ A =$ \begin{bmatrix} 1 & 0 & 5 & 3 \\ -2 & 1 & 6 & 1 \\ 3 & 2 & 7 & 1 \\ 4 & -4 & 2 & 0 \end{bmatrix} $ + $\frac{1}{2}$ $ \begin{bmatrix} 1 & -2 & 3 & 4 \\ 0 & 1 & 2 & -4 \\ 5 & 6 & 7 & 2 \\ 3 & 1 & 1 & 0 \end{bmatrix} $ = $ \begin{bmatrix} 1 & -1 & 4 & \frac{7}{2} \\ -1 & 1 & 4 & \frac{-3}{2} \\ 4 & 4 & 7 & \frac{3}{2} \\ \frac{7}{2} & \frac{-3}{2} & \frac{3}{2} & 0 \end{bmatrix} $

$\frac{1}{2}$ (A-A’) = $\frac{1}{2}$ A =$ \begin{bmatrix} 1 & 0 & 5 & 3 \\ -2 & 1 & 6 & 1 \\ 3 & 2 & 7 & 1 \\ 4 & -4 & 2 & 0 \end{bmatrix} $ - $\frac{1}{2}$ $ \begin{bmatrix} 1 & -2 & 3 & 4 \\ 0 & 1 & 2 & -4 \\ 5 & 6 & 7 & 2 \\ 3 & 1 & 1 & 0 \end{bmatrix} $ =$ \begin{bmatrix} 0 & 1 & 1 & \frac{-1}{2} \\ -1 & 0 & 2 & \frac{5}{2} \\ -1 & -2 & 0 & \frac{-1}{2} \\ \frac{1}{2} & \frac{-5}{2} & \frac{1}{2} & 0 \end{bmatrix} $

Let P = $\frac{1}{2}$ (A+A’) = $ \begin{bmatrix} 1 & -1 & 4 & \frac{7}{2} \\ -1 & 1 & 4 & \frac{-3}{2} \\ 4 & 4 & 7 & \frac{3}{2} \\ \frac{7}{2} & \frac{-3}{2} & \frac{3}{2} & 0 \end{bmatrix} $

P’ =$ \begin{bmatrix} 1 & -1 & 4 & \frac{7}{2} \\ -1 & 1 & 4 & \frac{-3}{2} \\ 4 & 4 & 7 & \frac{3}{2} \\ \frac{7}{2} & \frac{-3}{2} & \frac{3}{2} & 0 \end{bmatrix} $

Hence P = P’. P is a symmetric matrix.

Let Q =$\frac{1}{2}$(A-A’) = $ \begin{bmatrix} 0 & 1 & 1 & \frac{-1}{2} \\ -1 & 0 & 2 & \frac{5}{2} \\ -1 & -2 & 0 & \frac{-1}{2} \\ \frac{1}{2} & \frac{-5}{2} & \frac{1}{2} & 0 \end{bmatrix} $ Q’ =$ \begin{bmatrix} 0 & 1 & 1 & \frac{-1}{2} \\ -1 & 0 & 2 & \frac{5}{2} \\ -1 & -2 & 0 & \frac{-1}{2} \\ \frac{1}{2} & \frac{-5}{2} & \frac{1}{2} & 0 \end{bmatrix} $

Hence Q = Q’. Q is a skew symmetric matrix.

Please log in to add an answer.