| written 7.1 years ago by | • modified 6.1 years ago |
velocity and velocity of flow is constant. Assume number of frictional classes. find speed of wheel and vane angle at exit
| written 7.1 years ago by | • modified 6.1 years ago |
velocity and velocity of flow is constant. Assume number of frictional classes. find speed of wheel and vane angle at exit
| written 7.1 years ago by |
Given:-
H=30m
$D_{1}$=1.2 m
$D_{2}$=0.6 m

Guide blade angle $\alpha=15^{\circ}$
inlet vane angle $\Theta =90^{\circ}$
i.e $Vr_{1}=vf_{1} and Vw_{1}$=0
$vw_{2}$=0
$vf_{1}=vf_{2}=vf$

speed of whee, Nand vane angle $\phi$ at exit
$u_{1}vw_{2}=v_{1}cos\alpha=v_{1}cos/5$
$vf_{1}=v_{1}sin \alpha=vf_{2}=v_{2}$
$vf_{1}=vf_{2}=v_{2}=v_{1}sin/5$
H=$\frac{Vw_{1.u_{1}}}{g}+\frac{V_{2}^{2}}{2g}$
30=$\frac{V_{1}cos 15\times V_{1}cos15}{9.81}+\frac{(v_{1}sin15)^{2}}{2\times 9.81}$
$\Theta=\tan^{-1}\frac{Vf_{1}}{BD}=tan^{-1}(\frac{2.15}{0.093})=87.52^{\circ}.....$
$\Theta=tan^{-1}\frac{vf_{2}}{u_{2}}=tan^{-1}(\frac{2.15}{6.05})=19.564^{\circ}...ans$
$v_{2}=vf_{2}$=2.15m/s
ii) Head at inlet of turbine H:
H=$\frac{vw_{1}}{9}+\frac{v^{2}_{2}}{29}=\frac{12.193\times …