0
A 2kHz channel has signal to noise ratio of 24 dB
  1. Calculate max capacity of this channel.
  2. Assuming constant transmitting power, calculate max. capacity when channel b.w is 1 halved 2, reduced to quarter of its original value.
0  upvotes
0

B= 2 kHz and (S/N) = 24dB

$∴24=10 \log_10⁡ \big(\frac{S}{N}\big) \\ ∴\frac{S}{N}=251$

Channel capacity:

$C= B \log_2⁡ \big[1+\frac{S}{N}\big] \\ =2 \times 10^3 \log_2⁡[1+251] \\ C = 15.95 \times 10^3 bits/sec$

B is halved:

$∴ b.w, B_2=1kHz, old b.w., B_1=2 kHz \\ ∴N=N_o B,∴N_1=N_o B_1 \\ ∴N_2=N_o B_2 \\ ∴\frac{N_2}{N_1} =\frac{N_o B_2}{N_o B_1 }=\frac{B_2}{B_1} =\frac{1}{2} \\ ∴\frac{N_2}{N_1} =\frac{1}{2}$

As signal power remain constant,

SNR with new b.w. is,

$\frac{S}{N^2} =\frac{S}{N_1/2}=2 \frac{S}{N_1}$

But, $\frac{S}{N_1} =251 \\ ∴\frac{S}{N_2} =2 \times 251=502 \\ ∴C=B_2 \log_2⁡[i+S/N_2] \\ =2 \times 10^3 \log_{10}⁡(503)/ \log_{10} ⁡2 \\ =17.94 \times 1^3 bits/sec$

¼ of original value:

$\frac{N_2}{N_1} =\frac{1}{4} \\ ∴\frac{S}{N_3} =4 \frac{S}{N_1} =4 \times 251=1004 \\ ∴C=B_3 \log_2⁡(1+ \frac{S}{N_3} )=500 \log_2⁡(1004) \\ C=4.99 \times10^3 bits/sec.$

0  upvotes
Please log in to add an answer.

Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.

Search

Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More