0
1.2kviews
Consider the following state space respectively of single input single output system:

enter image description here

Here $x_1, x_2 \hspace{0.05cm}\& \hspace{0.05cm} x_3$ are atate variables, $\mu(t)$ is a false vaector & μ(t) being the sytem response. Obtain transfer function of the system.

1 Answer
0
0views

Comparing the given equation with standard equation, we get

$A = \begin{bmatrix} 0&1&0\\ 0&0&1\\ -1&-3&-2\\ \end{bmatrix}\\ B = \begin{bmatrix} 0\\ 0\\ 1\\ \end{bmatrix}\\ C = \begin{bmatrix} 1&0&0\\ \end{bmatrix}\\ D = 0$

We know that

$T.F = \frac{Y(S)}{U(S)} = C[SI - A]^{-1}B + D$

Now,

$[SI - A] = \begin{bmatrix} S&0&0\\ …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.