0
3.7kviews
Properties of Hardened FRC
1 Answer
0
142views

Factors Affecting Properties of Fiber Reinforced Concrete

Fiber reinforced concrete is the composite material containing fibers in the cement matrix in an orderly manner or randomly distributed manner. Its properties would obviously, depends upon the efficient transfer of stress between matrix and the fibers. The factors are briefly discussed below:

1. Relative Fiber Matrix Stiffness

The modulus of elasticity of matrix must be much lower than that of fiber for efficient stress transfer. Low modulus of fiber such as nylons and polypropylene are, therefore, unlikely to give strength improvement, but the help in the absorption of large energy and therefore, impart greater degree of toughness and resistance to impart. High modulus fibers such as steel, glass and carbon impart strength and stiffness to the composite.

2. Volume of Fibers

The strength of the composite largely depends on the quantity of fibers used in it.

3. Aspect Ratio of the Fiber

Another important factor which influences the properties and behavior of the composite is the aspect ratio of the fiber. It has been reported that up to aspect ratio of 75, increase on the aspect ratio increases the ultimate concrete linearly. Beyond 75, relative strength and toughness is reduced.

4. Orientation of Fibers

One of the differences between conventional reinforcement and fiber reinforcement is that in conventional reinforcement, bars are oriented in the direction desired while fibers are randomly oriented. To see the effect of randomness, mortar specimens reinforced with 0.5% volume of fibers were tested. In one set specimens, fibers were aligned in the direction of the load, in another in the direction perpendicular to that of the load, and in the third randomly distributed.

5. Workability and Compaction of Concrete

Incorporation of steel fiber decreases the workability considerably. This situation adversely affects the consolidation of fresh mix. Even prolonged external vibration fails to compact the concrete. The fiber volume at which this situation is reached depends on the length and diameter of the fiber. Another consequence of poor workability is non-uniform distribution of the fibers. Generally, the workability and compaction standard of the mix is improved through increased water/ cement ratio or by the use of some kind of water reducing admixtures.

6. Size of Coarse Aggregate

Maximum size of the coarse aggregate should be restricted to 10mm, to avoid appreciable reduction in strength of the composite. Fibers also in effect, act as aggregate. Although they have a simple geometry, their influence on the properties of fresh concrete is complex. The inter-particle friction between fibers and between fibers and aggregates controls the orientation and distribution of the fibers and consequently the properties of the composite. Friction reducing admixtures and admixtures that improve the cohesiveness of the mix can significantly improve the mix.

Please log in to add an answer.