| written 7.0 years ago by | • modified 5.5 years ago |
$u/U= 2(y/δ) - (y/δ)^{2}$Where U is the mean stream velocity and δ is the boundary layer thickness . Determine the displacement thickness and momentum thickness.
| written 7.0 years ago by | • modified 5.5 years ago |
$u/U= 2(y/δ) - (y/δ)^{2}$Where U is the mean stream velocity and δ is the boundary layer thickness . Determine the displacement thickness and momentum thickness.
| written 7.0 years ago by | • modified 7.0 years ago |
1)Determine momentum thickness:
θ=$∫_0^δ\frac{u}{U}(1-\frac{u}{U})dy$
Substitute value of $\frac{u}{U}$ in above equation we get,
$θ=[∫_0^δ{\frac{2y}{δ}-\frac{y^2}{δ^2}}{1-(\frac{2y}{δ}-\frac{y^2}{δ^2})} dy]$
Making substitution
Let $\frac{y}{δ}=$t
∴$y=δt$
$dy=δ$dt
Changing limit at $y=0, t=0$
At $y=δ,t=0$
∴$θ=∫_0^1[2t-t^2 ][1-2t+t^2 ]δdt$
=$δ[∫_0^1[2t-t^2 ][1-2t+t^2 ]$
$θ=0.1333δ ……… (ans)(1)$
Boundary layer thickness:
$\frac{u}{U}=\frac{2y}{δ}-(\frac{y}{δ})^2$
We know, $\frac{\tau_0}{ρU^2}=\frac{d}{dx} [∫_0^δ \frac{u}{U}(1-\frac{u}{U})dy]$
Substituting the value of …