written 6.3 years ago by |
Calculation of different Cost elements:
Let ; D= Diameter of job in mm
L= length of the job in mm
f=feed in mm/rev
N= rotational speed.=$\frac{1000 V}{π ×D}$
$t_m$ =machining speed of work piece. =$\frac{L}{f ×N}$
$t_h$= handling or loading time.
$K_1$= Operating cost.
$t_c$= tool changing time for one edge
We know that;
Cost of manufacturing one piece= handling cost per piece+ Machining cost per pc.+ Tool change cost per pc.+ Tool cost per pc. ………..1
Handling Cost per pc.
Handling Cost per pc (Rs/pc)=$t_h \times K_1$
$= t_h . K_1$………2
Machining cost per pc.
Machining cost per pc. = $t_m \times K_1$
=$K_1 .t_m$…………………3
$=K1.\frac{L}{f ×N}$
$= K1. \frac{L π D}{f ×1000 V}$
$= K_1 .\frac{L π D}{f ×1000} .\frac{1}{V}$
$ = K_1. \frac{K}{V}$………………………4
Tool change cost per pc.
$t_m$=machining time (min)
T=tool life (min)
Number of edges required to manufacture one piece = t_m/T
tool changing cost per pc. = $t_c \times \frac{t_{m}}{T} x K_1$
= $K_1 \times t_c \times \frac{t_{m}}{T}$ ……………..5
= $K_1 \times t_c \times \frac{K}{V}\times \frac{1}{T}$ …………6 (from eqn. 3 & 4)
Taylors tool life eqn.
$VT^{n}$=C
∴ $T=\frac{C^{1⁄n}}{V^{1⁄n}}$ ……………7
put in eqn. 6
tool changing cost per pc. =$ K_1 \times t_c \times \frac{K}{V}×\frac{V^{1⁄n}}{C^{1⁄n}}$
= $K_1x t_c \times \frac{K}{C^{1⁄n}} x V^{1⁄n} \times V-1$
= $K_1 \times t_c \times \frac{K}{C^{1⁄n}} × V^{\frac{1-n}{n}}$……….8
Tool cost per pc. Let; K2=tool cost per edge.
tool cost per piece = (no. of tool edges required to produce one pc.) x (tool cost per edge.)
=$ \frac{t_{m}}{T} \times K_2$
= $K_2 \times \frac{t_{m}}{T}$
=$ K_2 \times \frac{K}{C^{1⁄n}} × V^{\frac{1-n}{n}}$……….9
Expression of optimum cutting speed for minimum cost of production: from eqn. 1, 2, 4, 8, 9
Cost of manufacturing one piece= $t_h .K_1 + K_1.\frac{K}{V} + K_1 \times t_c \times \frac{K}{C^{1⁄n}} \times V^{\frac{1-n}{n}}+ K_2 \times \frac{K}{C^{1⁄n}} \times V^{\frac{1-n}{n}}$
=$t_h .K_1 + K_1.\frac{K}{V} + \frac{K}{C^{1⁄n}} (K_1. t_c+ K_2) .V^{\frac{1-n}{n}}$
for min cost of production
.d/dV (RHS)=0
$0+(-K_1. \frac{K}{V^{2}} ) + \frac{K}{C^{1⁄n}} (K_1. t_c+ K_2).V^{\frac{1-2n}{n}}$ = 0
⇛$V^{\frac{1-2n}{n}} .V^2= K_1 .C^{1⁄n} \frac{1}{(K_1 t_c+K_2 )} .\frac{n}{1-n}$
$⇛V_{min}=C.[\frac{n}{1-n}\times \frac{K_{1}}{K_1 t_c+K_2}]^n$
this is an eqn. of cutting speed for min cost of production. To find corresponding tool life
$VT^{n}$=C
$T_{min}=[\frac{C}{V_min}]^{\frac{1}{n}}$
$T_{min}=\frac{n}{1-n} × \frac{K_1 t_c+K_2}{K_{1}}$
this is the eqn. for tool life for min cost of production
⇛$C^{\frac{1}{n}}{t_{c}} . \frac{n}{1-n}= V^{\frac{1-2n}{n}} . V^{2} =V^{1⁄n}$
therefore, $V_{max}= C[\frac{1}{t_{c}} .\frac{n}{1-n}]^{n}$
this is an eqn. of cutting speed for max. rate of production. To find corresponding tool life
$VT^{n}=C$
$T_{max}=[\frac{C}{V_{max}} ]^{\frac{1}{n}}$
$T_{max}=[\frac{C}{C[\frac{1}{t_c}} .\frac{n}{1-n}]^{n})]^\frac{1}{n}$
$T_{max}=\frac{t_{c}(1-n)}{n}$
this is the eqn. for tool life for max. Rate of production.