| written 6.9 years ago by | modified 3.8 years ago by |
Derive Momentum thickness and energy thickness for the given velocity profile
u/U=2(y/δ)- (y/δ)^2
(10 Marks) May-2018
Subject Fluid Mechanics 2
Topic Boundary layer theory
Difficulty Medium
| written 6.9 years ago by | modified 3.8 years ago by |
Derive Momentum thickness and energy thickness for the given velocity profile
u/U=2(y/δ)- (y/δ)^2
(10 Marks) May-2018
Subject Fluid Mechanics 2
Topic Boundary layer theory
Difficulty Medium
| written 6.7 years ago by | • modified 6.7 years ago |
A) Momentum thickness, $\theta$ is,
$\theta = \int_o^\delta \frac{u}{U} (1-\frac{u}{U}) dy$
velocity profile
$\frac{u}{U} = 2 (\frac{y}{ \delta}) - (\frac{y}{\delta})^2 $
$\therefore \theta = \int_o^\delta \{2 (\frac{y}{\delta}) - (\frac{y}{\delta})^2\}$ $\{ 1- 2(\frac{y}{\delta}) - (\frac{y}{\delta})^2 \}$ dy
= $\int_o^\delta [\frac{2y}{\delta} - \frac{y^2}{\delta^2}] [ 1 - \frac{2y}{\delta} + \frac{y^2}{\delta^2}] $ dy …