written 6.2 years ago by |
MGF for binomial distribution
By defination, MGF about origin is
$ M_o(t) = E (e^{tx}) = \sum{p_ie^{txi}}$
$ = \sum{{{^h}_c}_xp^xq^{n-x}e^{tx}}$
$ = \sum{{{^h}_c}_xq^{n-x}(pe^t)^x}$
$ M_o(t) = (q + pe^t)^n -------------1$
To find mean, differentiate $ M_o(t)$ and put t = 0
$E(X) = \frac{d}{dt} [M_o(t)]_{t=0} =\frac{d}{dt} [(q + pe^t)^n]_{t=0} $
$ =[n(q + pe^t)^{n-1}(0 + pe^t)]_{t=0} $
$E(X) = [npe^t(q + pe^t)^{n-1}]_{t=0} $
$E(X) = np [e^t(q + pe^t)^{n-1}]_{t=0} $
$E(X) = np [e^0(q + pe0)^{n-1}]_{t=0} $
$E(X) = np [q + p]^{n-1} ----\rightarrow e^0 = 1$
since q + p =1
$ \therefore np[1]^{n-1}$
$ \therefore E(X) = np = mean ---------2 $
$To find variance i.e \sigma^2 = E(X)^2- [E(X)]^2 -----------3 $
To find $ [E(X)]^2$ differentiate 1 twice w.r.t 't' and put t = 0
$ [E(X)]^2 = \frac{d^2}{dt^2} [M_o(t)]_{t=0} =\frac{d^2}{dt^2} [(q + pe^t)^n]_{t=0} $
$ =\frac{d}{dt} [n(q + pe^t)^{n-1}(0 + pe^t)]_{t=0} $
$E(X) = \frac{d}{dt} [np[e^t(q + pe^t)^{n-1}]]_{t=0} $
$ = [np[e^t(n-1)(e^t(q + pe^t)^{n-1-1})](0 + pe^t) + (e^t(q + pe^t)^{n-1}) ]_{t=0} $
Put t= 0
$ = [np[e^0(n-1)(e^0(q + pe^0)^{n-2})](pe^0) + (e^0(q + pe^0)^{n-1}) ] $
$ = [np[(n-1)(q + p)^{n-2}](p) + (q + p)^{n-1} ]-------\ but \ q+p=1 $
$ = np[(n-1)(1)^{n-2}](p) + (1)^{n-1} $
$ = np[(n-1)(1)](p) + (1) $
$ = np-p+1$
$ = np[np + (1-p)] ----------[since q= 1-p] $
$ = np [np + q] $
$E(X^2) = n^2p^2 + qnp -----------4 $
put 2 & 4 in 3
$ \sigma^2 = n^2p^2 + qnp - [np]^2 $
$ \sigma^2 = n^2p^2 + qnp - n^2p^2 $
$ \sigma^2 = variance = npq $
written 6.2 years ago by |
MGF for binomial distribution
By defination, MGF about origin is
$ M_o(t) = E (e^{tx}) = \sum{p_ie^{txi}}$
$ = \sum{{{^h}_c}_xp^xq^{n-x}e^{tx}}$
$ = \sum{{{^h}_c}_xq^{n-x}(pe^t)^x}$
$ M_o(t) = (q + pe^t)^n -------------1$
To find mean, differentiate $ M_o(t)$ and put t = 0
$E(X) = \frac{d}{dt} [M_o(t)]_{t=0} =\frac{d}{dt} [(q + pe^t)^n]_{t=0} $
$ =[n(q + pe^t)^{n-1}(0 + pe^t)]_{t=0} $
$E(X) = [npe^t(q + pe^t)^{n-1}]_{t=0} $
$E(X) = np [e^t(q + pe^t)^{n-1}]_{t=0} $
$E(X) = np [e^0(q + pe0)^{n-1}]_{t=0} $
$E(X) = np [q + p]^{n-1} ----\rightarrow e^0 = 1$
since q + p =1
$ \therefore np[1]^{n-1}$
$ \therefore E(X) = np = mean ---------2 $
$To find variance i.e \sigma^2 = E(X)^2- [E(X)]^2 -----------3 $
To find $ [E(X)]^2$ differentiate 1 twice w.r.t 't' and put t = 0
$ [E(X)]^2 = \frac{d^2}{dt^2} [M_o(t)]_{t=0} =\frac{d^2}{dt^2} [(q + pe^t)^n]_{t=0} $
$ =\frac{d}{dt} [n(q + pe^t)^{n-1}(0 + pe^t)]_{t=0} $
$E(X) = \frac{d}{dt} [np[e^t(q + pe^t)^{n-1}]]_{t=0} $
$ = [np[e^t(n-1)(e^t(q + pe^t)^{n-1-1})](0 + pe^t) + (e^t(q + pe^t)^{n-1}) ]_{t=0} $
Put t= 0
$ = [np[e^0(n-1)(e^0(q + pe^0)^{n-2})](pe^0) + (e^0(q + pe^0)^{n-1}) ] $
$ = [np[(n-1)(q + p)^{n-2}](p) + (q + p)^{n-1} ]-------\ but \ q+p=1 $
$ = np[(n-1)(1)^{n-2}](p) + (1)^{n-1} $
$ = np[(n-1)(1)](p) + (1) $
$ = np-p+1$
$ = np[np + (1-p)] ----------[since q= 1-p] $
$ = np [np + q] $
$E(X^2) = n^2p^2 + qnp -----------4 $
put 2 & 4 in 3
$ \sigma^2 = n^2p^2 + qnp - [np]^2 $
$ \sigma^2 = n^2p^2 + qnp - n^2p^2 $
$ \sigma^2 = variance = npq $