written 6.4 years ago by | modified 3.2 years ago by |
Subject: Structural Analysis 1
Topic: Deflection Of Statically Determinate Structures Using Geometrical Methods
Difficulty: High
written 6.4 years ago by | modified 3.2 years ago by |
Subject: Structural Analysis 1
Topic: Deflection Of Statically Determinate Structures Using Geometrical Methods
Difficulty: High
written 3.2 years ago by | • modified 3.2 years ago |
\begin{array}{l}
\sum V=0 \
R_{A}+R_{B}=30 \mathrm{kN} \
\sum M_{A}=0 \
\left(R_{B} \times 4\right)=30 \times 6 \
R_{B}=45 \mathrm{KN} \
R_{A}=-15 \mathrm{KN}
\end{array}
In M/EI diagram as:-
\begin{array}{l}
R_{A}+R_{B}=\frac{1}{2} \times 30 \times 4+\frac{1}{2} \times 60 \times 2 \
R_{A}+R_{B}=\frac{120}{E I}
\end{array}
\begin{array}{l}
\text M_{BLeft}=0 \
\left(R_{A} \times 4\right)=\frac{1}{2} \times 30 \times 4 \times \frac{4}{3} \
R_{A}=\frac{20}{E I} \mathrm{KN} \
R_{C}=\frac{100}{E I}\mathrm{KN}
\end{array}
\begin{array}{l}
\sum M_{C}=0\
M_{C}+\left(R_{A} \times 6\right)-\left(\frac{1}{2} \times \frac{30}{E^{7}} \times 4 \times\left(2+\frac{4}{3}\right)\right)-\frac{1}{2} \times 60 \times 2 \times \frac{4}{3}=0\
M_{c}=\frac{160}{EI}\
\text { Thus, } \Delta_{c}=M_{c}=\frac{160}{EI} \
\theta_{c}=R_{c}=\frac{100}{EI} \mathrm{CW}
\end{array}