| written 6.9 years ago by | • modified 6.8 years ago |
$\frac{Y(s)}{V(s)} = \frac{3s+4}{s^2 +5s +6}$
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic : State Variable Models
Difficulty : High
Marks : 10M
| written 6.9 years ago by | • modified 6.8 years ago |
$\frac{Y(s)}{V(s)} = \frac{3s+4}{s^2 +5s +6}$
Mumbai University > Electronics Engineering > Sem 4 > Linear Control Systems
Topic : State Variable Models
Difficulty : High
Marks : 10M
| written 6.8 years ago by | • modified 6.8 years ago |
Properties of state Transition matrix =>
1) $\phi(o)$ = $e^{Ao}$ = I
2) $\phi(t) = e^{At} = [\phi(-t)]^{-1}$
i.e. $\phi^{-1}(t) = \phi(-t)$
3) $\phi(t_1 + t_2) = e^{A(t_1+t_2)}$
=$e^{At_1}.e^{At_2} = \phi(t_1).\phi(t_2)$
4) $[\phi(t)]^n = [e^{At}]^n$
= $\phi(nt)$
5) $\phi(t_2-t_1).\phi(t_1-t_o) = \phi(t_2-t_o)$
Given =>
$\frac{Y(s)}{V(s)} = \frac{3s+4}{s^2 + 5s + 6}$ …