2
44kviews
Flow Through Pipes
1 Answer
8
1.8kviews

Loss of Energy in Pipes:-

When a fluid flows through a pipe, the fluid experiences some resistance because of which some energy of the fluid is lost.

enter image description here

Major Energy Losses Minor Energy Losses
Mainly due to friction. Can be calculated using: (a) Darcy-Weisbach Formula (b) Chezy's Formula Mainly due to: (a) Sudden expansion (b) Sudden Contraction (c) Bend in pipe (d) Pipe fitting

Loss of Energy or Head due to friction:-

(1) Darcy-Weisbach Equation:-

$hf=\dfrac{4.f.L.V^2}{d\times 2g}$

where hf = loss of head due to friction

f = co-efficient of friction

=$\dfrac{16}{R_e}$ for $R_e\lt2000$ (Viscous Flow)

=$\dfrac {0.079}{R_e^{\dfrac 14}}$ for $R_e$ varying from 4000 to 10$^6$

V = Mean Density

d = diameter of pipe

L = Length of pipe

(2) Chezy's Formula or equation: -

$v=c\sqrt{mi}$


Numericals:-

Q1) Find the head lost due to friction in a pipe of diameter 300mm and length 50m through which water is flowing at a velocity of 3m/s using (i) Darcy weisbach (ii) Chezy's Formula (c=60)

(Take V=0.01 stoke (for water))

Solution:

Given: Diameter of the pipe, d = 300mm (divide by '1000' to convert it from 'mm' to 'm')

So, d=0.3 m

Length, L= 50m

Velocity, v=3m/s

Kinematic Viscosity, V=0.01stoke

$V=0.01 cm^2/s$

$V=0.01\times 10^{-4}m^2/s$

$\therefore$ By Darcy's Formula,

$hf=\dfrac {4\times f\times L\times V^2}{d\times 2g}$

All the values are given except 'f'

'f' = coefficient of friction which is the function of Reynolds number '$R_e$'

To find: 'f'

$f=\dfrac{0.079}{R_e^{\dfrac 14}}$

$\therefore R_e=\dfrac{V\times d}{v}$

$=\dfrac {3.0\times 0.30}{0.01\times 10^{-4}}$

$R_e=9\times 10^5$

$\therefore f=\dfrac {0.079}{(9\times 10^5)^{\dfrac14}}$

$f=2.56\times10^{-3}$

or $f=0.00256$

Therefore, Head lost, $hf=\dfrac{4\times0.00256\times 50\times 3^2}{0.3\times 2.0\times 9.81}$

$hf=782.87\times 10^{-3}$

$hf=0.7828m$

Now by using Chezy's formula:-

$V=c\sqrt{mi}$

where, $c=60, m=\dfrac d4=\dfrac {0.30}4=0.075m$

$\therefore 3=60\sqrt{0.075\times i}.................(i)$

or, $\therefore, i=\left(\dfrac {3}{60}\right)^2\times \dfrac 1{0.075}...................(ii)$

By equating, we get

$i=0..333$

But, $i=\dfrac {hf}L$

$\therefore, 0.333=\dfrac {hf}{50}$

$\therefore hf=1.665m$


Q2) Find the diameter of a pipe of length 2000m when the rate of flow of water through the pipe is 200 litres/s and the head lost due to friction is 4m. Take the value of c=50 in Chezy's Formula

Solution:-

Given:

L=200m

$Q=200lit/s=\dfrac {200}{1000}=0.2m^3/s$

hf=head lost due to friction=4m

c=50

Step 1: Velocity of flow

$V=\dfrac {\text{Discharge}}{\text{Area}}$

$V=\dfrac {Q}{\dfrac \pi 4d^2}$

$V=\dfrac{0.2\times 4}{\pi d^2}...............................(i)$

Step 2: Hydraulic mean depth

$m=\dfrac d4.........................(ii)$

Loss of head per unit length

$i=\dfrac {hf}L=\dfrac 4{2000}$

$i=0.002.....................(iii)$

Now substituting the value of V, m, iand c from the equation (i), (ii), (iii), we get

$V=c\sqrt{mi}$

$\dfrac{0.2\times 4}{\pi d^2}=50\sqrt{\dfrac d4\times 0.002}$

$\dfrac{0.2\times 4}{\pi d^2\times 50}=\sqrt{\dfrac d4\times 0.002}$

$\dfrac{0.00509}{ d^2}=\sqrt{\dfrac d4\times 0.002}$

Squaring on both sides, we get

$\dfrac{(0.00509)^2}{ d^4}=\dfrac d4\times 0.002$

$\dfrac{2.59\times 10^{-5}}{ d^4}=\dfrac d4\times 0.002$

Rearranging, we get

$d^5=\dfrac {4\times (2.59\times 10^{-5})}{0.002}$

$d^5=\dfrac {4\times (0.0000259)}{0.002}$

$\therefore d^5=0.0518$

$\therefore d=\sqrt[5]{0.0518}$

$d=0.553m$


Q3) A crude oil of kinematic viscosity 0.4 stoke is flowing through a pipe of diameter 300 mm at the rate of 300 litres per se. Find the head lost due to friction for a length of 50 m of the pipe.

Solution:

Given:

$V=0.4 stoke=0.4cm^2/s=0.4\times 10^{-4}m^2/s$

$d=300mm=0.3m^3/s$

L=50m

Step 1: Velocity of flow

$V=\dfrac {\text{Discharge}}{\text{Area}}$

$V=\dfrac {Q}{\dfrac \pi 4d^2}$

$V=\dfrac{0.3\times 4}{\pi (0.3)^2}$

$V=4.24m/s$

Step 2: Reynold's Number

$R_e=\dfrac {V\times d}v$

$R_e=\dfrac {4.24\times 0.3}{0.4\times 10^{-4}}$

$R_e=3.18\times 10^4$

As the value of $R_e$ lies between 4000 and 10000, the value of 'f' is given by

$f=\dfrac{0.079}{R_e^{\dfrac 14}}$

$f=\dfrac {0.079}{(3.18\times 10^4)^{\dfrac 14}}$

$f=5.91\times10^{-3}$

or, f=0.00591

Now by Darcy's Formula

$hf=\dfrac {4\times f\times L\times V^2}{d\times 2g}$

$hf=\dfrac{4\times 0.00591\times 50\times 4.24^2}{0.3\times 2\times 9.81}$

$\therefore$ Head lost due to friction $hf=3.61m$


Q4) An oil of sp.gr. 0.7 is flowing through a pipe of diameter 300 mm at the rate of 500 litres/s. Find the head lost due to friction and power required to maintain the floor for a length of 1000 m. Take v=0.29 stokes.

Solution: Given:-

s=0.7

Diameter of pipe, $d=300mm=0.3m$

Discharge, $Q=500lit/s=0.5m^3/s$

Length, $L=1000m$

Step 1: Velocity

$V=\dfrac Q{\text{area}}$

$V=\dfrac {0.5}{\dfrac \pi 4\times d^2}=\dfrac {0.5\times 4}{\pi\times 0.3^2}=7.073m/s$

Step2: Reynold's Number

$R_e=\dfrac {V\times d}v$

$R_e=\dfrac {7.073\times 0.3}{0.29\times 10^{-4}}$

$R_e=7.316\times 10^4$

Step 3: Coefficient of friction,

$f=\dfrac {0.079}{R_e^{\dfrac 14}}$

$f=\dfrac {0.079}{(7.316\times 10^4)^{\dfrac 14}}$

$f=0.0048$

Step 4: Head Lost

$hf=\dfrac {4\times f\times L\times V^2}{d\times 2g}$

$hf=\dfrac {4\times 0.0048\times 1000\times 7.073^2}{0.3\times 2\times 9.81}$

$f=163.18m$

Step 5: Power required

$=\dfrac {\rho. g.Q.hf}{1000}$

Density of oil, $\rho=07\times 1000=700kg/m^3$

Power required $=\dfrac {700\times 9.81\times 0.5\times 16318}{1000}$

Hence power required = 560.28kW

Please log in to add an answer.