Area velocity relationship for compressible flow

Area velocity relationship for compressible flow

$\therefore A\times V=\text{constant}$

Above equation proof that as the area increases, velocity decreases.

But incase of compressible fluid, the continuity equation is given by

$\rho AV=\text{constant}..............(1)$

From this it is clear that with change in area, both velocity and density are affected.

$\therefore \rho d(AV)+AVd\rho=0$


$\rho AdV+\rho VdA+AVd\rho=0$

Therefore dividing by $\rho AV$, we get

$\dfrac {dV}V+\dfrac {dA}A+\dfrac {d\rho}\rho=0...................(2)$

Euler's equation for compressible fluid is,

$\dfrac {dP}{\rho}+VdV+gdz=0$

Neglecting the z term, the above equation is written as

$\dfrac {dP}\rho+VdV=0$

(Divide and multiply by $d\rho$)

$\dfrac {dP}{d\rho}\times\dfrac {d\rho}\rho+VdV=0$

But, $\dfrac {dP}{d\rho}=c^2$

Hence the above equation becomes,

$c^2\dfrac {d\rho}\rho+VdV=0$

$c^2\dfrac {d\rho}{\rho}=-VdV$

$\dfrac {d\rho}{\rho}=-\dfrac {VdV}{c^2}$

Substituting the value of $\dfrac {d\rho}\rho$ in equation (2), we get

$\dfrac {dV}V+\dfrac {dA}A-\dfrac {VdV}{c^2}=0$

$\dfrac {dA}A=\dfrac {VdV}{c^2}-\dfrac {dV}V$

$\dfrac {dA}A=\dfrac {dV}V\left[\dfrac{V^2}{c^2}-1\right]$

$\dfrac {dA}A=\dfrac {dV}V\left[M^2-1\right]$

Important conclusions:-

  1. For M<1, the flow is sub-sonic and right-hand side equation is negative as ($M^2-1$) is negative for the value M<1.

  2. For M>1, the flow is Super sonic. The value ($M^2-1$) will be positive and hence right hand side will be positive.

  3. For m = 1, the flow is called Sonic flow. The value ($M^2-1$) is zero hence my right hand side of equation will be zero. $\left(\dfrac {dA}A=0\right)$.

This means area is constant.

page fluid mechanics 2 fm2 • 64  views

Next up

Read More Questions

If you are looking for answer to specific questions, you can search them here. We'll find the best answer for you.


Study Full Subject

If you are looking for good study material, you can checkout our subjects. Hundreds of important topics are covered in them.

Know More