0
Principal Component Analysis

This method was introduced by Karl Pearson. It works on a condition that while the data in a higher dimensional space is mapped to data in a lower dimension space, the variance of the data in the lower dimensional space should be maximum.

enter image description here

It involves the following steps:

  • Construct the covariance matrix of the data.

  • Compute the eigenvectors of this matrix.

  • Eigenvectors corresponding to the largest eigenvalues are used to reconstruct a large fraction of variance of the original data.

Hence, we are left with a lesser number of eigenvectors, and there might have been some data loss in the process. But, the most important variances should be retained by the remaining eigenvectors.

0

Continue reading

Find answer to specific questions by searching them here. It's the best way to discover useful content.

Find more