| written 6.7 years ago by | modified 3.8 years ago by |
Show that the matrix:
$A=\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$
Also find the diagonal and transforming matrix.
| written 6.7 years ago by | modified 3.8 years ago by |
Show that the matrix:
$A=\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$
Also find the diagonal and transforming matrix.
| written 6.7 years ago by |
Solution:
$A=\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$
$|A|=3$
To find eigen values:
$|A- \lambda I|=0$
$A=\begin{vmatrix} -9- \lambda & 4 & 4 \\ -8 & 3- \lambda & 4 \\ -16 & 8 & 7- \lambda \end{vmatrix}=0$
$\lambda^{3}-(-9+3+7)\lambda^{2}+(-27+21-63+32+64-32)\lambda-3=0$
$\lambda^{3}-\lambda^{2}+5\lambda-3=0$
$\lambda=-1, -1,3$
To find the eigen vector,
$[A-\lambda I]X=0$
$\begin{bmatrix} -9- \lambda & 4 & 4 \\ -8 & 3- \lambda & 4 \\ -16 & 8 & 7- \lambda \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ ---------(1)
Putting $\lambda=-1$ in (1),
$\begin{bmatrix} -8 & 4 & 4 \\ -8 & 4 & 4 \\ -16 & 8 & 8 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
Therefore, $R_{2}-R_{1} $ and $R_{3}-2R_{1}$,
$\begin{bmatrix} -8 & 4 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
Therefore, $\cfrac{R_{1}}{4}$,
$\begin{bmatrix} -2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
$-2x_{1}+x_{2}+x_{3}=0$ ---------(2)
$\therefore$ Rank of the matrix = 7
Put $x_{2}=2s$ and $x_{3}=2t$ in equation (2),
$-2x_{1}+2s+2t=0$
$2x_{1}=2s+2t$
$x_{1}=s+t$
Now from equation (2),
$x_{2} = 2x_{1}-x_{3}$
$x_{2}=2(s+t)-2t$
$x_{2}=2s+2t-2t$
$x_{2}=2s$
Similarly, from equation (2),
$x_{3}=2x_{1}-x_{2}$
$x_{3}=2(s+t)-2s$
$x_{3}=2s+2t-2s$
$x_{3}=2t$
$X_{1}=\begin{bmatrix} s+t \\ 2s+0 \\ 0+2t \end{bmatrix}=\begin{bmatrix} s \\ 2s \\ 0 \end{bmatrix}+\begin{bmatrix} t \\ 0 \\ 2t \end{bmatrix}$
$X_{1}=s \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}+t\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$
$X_{1}=[1, 2, 0]$ ---------(3)
$X_{1}=[1, 0, 2]$ ---------(4)
Put $\lambda=3$ in (1),
$\begin{bmatrix} -12 & 4 & 4 \\ -8 & 0 & 4 \\ -16 & 8 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
$-12x_{1}+4x_{2}+4x_{3}=0$
$-8x_{1}+0x_{2}+4x_{3}=0$
$-16x_{1}+8x_{2}+4x_{3}=0$
$\cfrac{x_{1}}{\begin{vmatrix} 4 & 4 \\ 0 & 4 \end{vmatrix}}=-\cfrac{x_{2}}{\begin{vmatrix} -12 & 4 \\ -8 & 4 \end{vmatrix}}=\cfrac{x_{3}}{\begin{vmatrix} -12 & 4 \\ -8 & 0 \end{vmatrix}}$
$\cfrac{x_{1}}{16-0}=\cfrac{x_{2}}{-48+32}=\cfrac{x_{3}}{0+32}$
$\cfrac{x_{1}}{16}=\cfrac{x_{2}}{-16}=\cfrac{x_{3}}{32}$
$X_{3}=\begin{bmatrix} 16 \\ 16 \\ 32 \end{bmatrix}=\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$
$X_{3}=[1, 1, 2]$ ---------(5)
$\therefore M=[X_{1} \ X_{2} \ X_{3} ]$,
$M=\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$
Since $M^{-1}AM=D$
$A=\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ will be diagonalised to the diagonal matrix
$D=\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
by the transforming matrix $M=\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$