0
7.2kviews
Explain various types of noise affecting communication system.

Subject: Principles of Communication Engineering

Difficulty : Medium

Marks : 05

1 Answer
2
250views

Types of Noise:

enter image description here

Explanation of External Noise

Atmospheric Noise Atmospheric noise or static is caused by lighting discharges in thunderstorms and other natural electrical disturbances occurring in the atmosphere. These electrical impulses are random in nature. Hence the energy is spread over the complete frequency spectrum used for radio communication.

Extraterrestrial Noise There are numerous types of extraterrestrial noise or space noises depending on their sources. However, these may be put into following two subgroups.

  1. Solar noise
  2. Cosmic noise

Solar noise This is the electrical noise emanating from the sun. Under quite conditions, there is a steady radiation of noise from the sun. This results because sun is a large body at a very high temperature (exceeding 6000°C on the surface), and radiates electrical energy in the form of noise over a very wide frequency spectrum including the spectrum used for radio communication. The intensity produced by the sun varies with time. In fact, the sun has a repeating 11-Year noise cycle. During the peak of the cycle, the sun produces some amount of noise that causes tremendous radio signal interference, making many frequencies unusable for communications. During other years, the noise is at a minimum level.

Cosmic noise Distant stars are also suns and have high temperatures. These stars, therefore, radiate noise in the same way as our sun. The noise received from these distant stars is thermal noise (or black body noise) and is distributing almost uniformly over the entire sky. We also receive noise from the center of our own galaxy (The Milky Way) from other distant galaxies and from other virtual point sources such as quasars and pulsars.

Man-Made Noise (Industrial Noise) By man-made noise or industrial- noise is meant the electrical noise produced by such sources as automobiles and aircraft ignition, electrical motors and switch gears, leakage from high voltage lines, fluorescent lights, and numerous other heavy electrical machines. Such noises are produced by the arc discharge taking place during operation of these machines. Such man-made noise is most intensive in industrial and densely populated areas. Man-made noise in such areas far exceeds all other sources of noise in the frequency range extending from about 1 MHz to 600 MHz

Explanation of Internal Noise

Thermal Noise: Conductors contain a large number of 'free" electrons and "ions" strongly bound by molecular forces. The ions vibrate randomly about their normal (average) positions, however, this vibration being a function of the temperature. Continuous collisions between the electrons and the vibrating ions take place. Thus there is a continuous transfer of energy between the ions and electrons. This is the source of resistance in a conductor. The movement of free electrons constitutes a current which is purely random in nature and over a long time averages zero. There is a random motion of the electrons which give rise to noise voltage called thermal noise. Thus noise generated in any resistance due to random motion of electrons i5 called thermal noise or white or Johnson noise.

Shot Noise The most common type of noise is referred to as shot noise which is produced by the random arrival of 'electrons or holes at the output element, at the plate in a tube, or at the collector or drain in a transistor. Shot noise is also produced by the random movement of electrons or holes across a PN junction. Even through current flow is established by external bias voltages, there will still be some random movement of electrons or holes due to discontinuities in the device. An example of such a discontinuity is the contact between the copper lead and the semiconductor materials. The interface between the two creates a discontinuity that causes random movement of the current carriers.

Transit Time Noise Another kind of noise that occurs in transistors is called transit time noise. Transit time is (he duration of time that it takes for a current carrier such as a hole or current to move from the input to the output. The devices themselves are very tiny, so the distances involved are minimal. Yet the time it takes for the current carriers to move even a short distance is finite. At low frequencies this time is negligible. But when the frequency of operation is high and the signal being processed is the magnitude as the transit time, then problem can occur. The transit time shows up as a kind of random noise within the device, and this is directly proportional to the frequency of operation.

Flicker Noise Flicker noise or modulation noise is the one appearing in transistors operating at low audio frequencies. Flicker noise is proportional to the emitter current and junction temperature. However, this noise is inversely proportional to the frequency. Hence it may be neglected at frequencies above about 500 Hz and it, Therefore, possess no serious problem.

Transistor Thermal Noise Within the transistor, thermal noise is caused by the emitter, base and collector internal resistances. Out of these three regions, the base region contributes maximum thermal noise.

Partition Noise Partition noise occurs whenever current has to divide between two or more paths, and results from the random fluctuations in the division. It would be expected, therefore, that a diode would be less noisy than a transistor (all other factors being equal) If the third electrode draws current (i.e.., the base current). It is for this reason that the inputs of microwave receivers are often taken directly to diode mixers.

Please log in to add an answer.