
Using double integration method,
$BM_x=EI\frac{d^2y}{dx^2}=-3x-1(x-2)$
Integrating,
$EI\frac{dy}{dx}=\frac{-3x^2}{2}-\frac{1(x-2)^2}{2}+c_1$---------(1)
First boundary condition to find $c_1$
$\text{At } x=5; \frac{dy}{dx}=0 \text{ [put in equation (1)]}$
$0=-\frac{3(5)^2}{2}-\frac{1(5-2)^2}{2}+c_1$
$0=-37.5-4.5+c_1$
$c_1=42 \text{ [put in equation (1)]}$
$EI\frac{dy}{dx}=-\frac{3x^2}{2}-\frac{1(x-2)^2}{2}+42$----------------(A)
Integrating again,
$EIy=-\frac{3x^3}{6}-\frac{1(x-2)^3}{6}+42x+c_2$---------(2)
Second boundary condition to find $c_2$
$\text{At x=5 & y=0}$
$0=-\frac{3(5)^3}{6}-\frac{1(5-2)^3}{6}+42\times 5+c_2$
$0=-62.5-4.5+210+c_2$
$c_2=-143 \text{ [put …
Create a free account to keep reading this post.
and 5 others joined a min ago.