| written 6.7 years ago by | modified 3.7 years ago by |
Using virtual work method, for rigid jointed frame as shown in fig. Find horizontal displacement of roller. Take $E=200\times 10^3MPa,I=4\times 10^6mm^4$
| written 6.7 years ago by | modified 3.7 years ago by |
Using virtual work method, for rigid jointed frame as shown in fig. Find horizontal displacement of roller. Take $E=200\times 10^3MPa,I=4\times 10^6mm^4$
| written 6.7 years ago by |

$\sum M_A=0$
$(-V_d\times 4)+(15\times 4\times 2)(8\times 5)=0$
$\therefore V_d=40kN$
$\sum F_y=0$
$V_A+40-60=0$
$V_a=20kN$

$\sum M_A=0$
$-V_d\times+(1\times 2)=0$
$4V_d=2$
$V_d=0.5kN(\uparrow)$
$V_a=0.5kN(\downarrow)$
$E=200\times 10^3MPa$
$=\frac{200\times 10^3\times 10^{-3}kN}{(10^{-6})m^2}$
$E=200\times 10^6kN/m^2$
$I=4\times 10^8mm^4=4\times 10^8\times (10^{-3})^4m^4$
$I=4\times 10^{-4}m^4$
| Part | Origin | Limit | $M_u$ | $m_u$ | EI |
|---|---|---|---|---|---|
| AB | A | 0-5 | 8.x | 1.x | EI |
| BC | B | 0-4 | $20x+40-7.5x^2$ | $(1\times … |