0
891views
If $\lambda_1,\lambda_2...\lambda_n$ are eigen values of A then show that $\frac{1}{\Lambda_1} ,\frac{1}{\lambda_2}...$Are eigen values of $A^{-1}$
1 Answer
0
1views

If $\lambda$ is an eigen value of A and X is the corresponding eigen vector then

$ \begin{aligned} AX &= \lambda X \\ X&= (A)^{-1}(\lambda X)\\ X&= \lambda(A^{-1}X) \\ \frac{1}{\lambda} X &= A^{-1} X \\ \end{aligned}$

By comparing both sides $\frac {1}{\lambda}$ is an eigen value of $A^{-1}$

Hence proved.

Please log in to add an answer.