| written 6.7 years ago by | modified 3.6 years ago by |
Using Kuhn-Tucker condition, solve the following NLPP.
Maximise, $z=2x_{1}^{2}-7x_{2}^{2}+12x_{1}x_{2}$
Subject to, $2x_{1}+5x_{2} \le 98$
$x_{1}, \ x_{2} \ge 0$
| written 6.7 years ago by | modified 3.6 years ago by |
Using Kuhn-Tucker condition, solve the following NLPP.
Maximise, $z=2x_{1}^{2}-7x_{2}^{2}+12x_{1}x_{2}$
Subject to, $2x_{1}+5x_{2} \le 98$
$x_{1}, \ x_{2} \ge 0$
| written 6.7 years ago by |
Solution:
$z=2x_{1}^{2}-7x_{2}^{2}+12x_{1}x_{2}$
Subject to, $2x_{1}+5x_{2} \le 98$
$x_{1}, \ x_{2} \ge 0$
We write the given problem as
$f(x_{1}, \ x_{2})=2x_{1}^{2}-7x_{2}^{2}+12x_{1}x_{2}$ -------------(1)
$h(x_{1}, \ x_{2})=2x_{1}+5x_{2}-98$ ----------------(2)
Now, Kuhn-Tucker condition are,
$\cfrac{\delta f}{\delta x_{1}}-\lambda \cfrac{\delta h}{\delta x_{1}}= 0$ -------------(3)
$\cfrac{\delta f}{\delta x_{2}}-\lambda \cfrac{\delta h}{\delta x_{2}}= 0$ -------------(4)
$\lambda h(x_{1}, \ x_{2})=0, …