| written 6.7 years ago by | • modified 6.7 years ago |
Solution
$I=\int_0^1 F(x,y ,y')dx$-----(1)
where $F=2xy+y^2-y'^2$------(2)
Now assume the trial solution,
$\bar y(x)=c_0+c_1x+c_2x^2$---(3)
Put x=0 in (3)
$\bar y(0)=c_0+c_1(0)+c_2(0^2)$
$\bar y(0)=c_0+0+0$
But $\bar y(0)=0$--------given
$c_0=0$
Put x=1 in (3)
$\bar y(1) = c_0+c_1(1)+c_2(1)^2$
$\bar y(1) = 0+c_1+c_2$
$\bar y(1) = 0$----------(Given)
$0=c_1+c_2$
$c_2=-c_1$
Eqn (3) becomes
$\bar y(x)=0+c_1x+c_2x^2$
$\bar y(x)=c_1-c_1x^2$
$\bar y(x)=c_1x(1-x)$----(4)
diff. w r t x
$\bar y'(x)=c_1(1-2x)$-----(5)
Put all these values in equation (1)
$I=\int_0^1 F(2xy+y^2-y'2)dx$
$I=\int_0^1 [2xc_1x(1-x)+c_1^2 x^2 (1-x)^2-c_1^2(1-2_x)^2]dx$
$I=\int_0^1 [2c_1(x^2-x^3)+c_1^2 x^2 (1-2x+x^2)-c_1^2(1-4x+4x^2)]dx$
$I=\int_0^1 [2c_1(x^2-x^3)+c_1^2 (x^2-2x^3+x^4)-c_1^2(1-4x+4x^2)]dx$
$I=c_1\int_0^1 [2(x^2-x^3)+c_1[ x^2 +x^4-2x^3-1+4x-4x^2]dx$
$I=c_1\int_0^1 [2(x^2-x^3)+c_1[ -1+4x-3x^2-2x^3+x^4]dx$
$I=c_1 [2(\frac{x^3}{3}-\frac{x^4}{4})+c_1[ -x +\frac{4x^2}{2}-\frac{3x^3}{3}-\frac{2x^4}{4}-\frac{x^5}{5}]]^1_0$
upperlimit-lowerimit
$c_1{[2(\frac{1}{3}-\frac{1}{4})+c_1(-1+\frac{4}{2}-\frac{3}{3}-\frac{2}{4}+\frac{1}{5})]-[0]}$
$c_1 \{2[\frac{1}{12}]+c_1 [\frac{-3}{10}] \}$
$c_1[\frac{1}{6}-\frac {3}{10}c_1]$
$I=\frac {c_1}{6}-\frac{3}{10}c_1^2$----(6)
It is stationary values
$\frac {dI}{dc_1}=0$-------(7)
diff.(6)w.r.t $c_1$
$\frac{dI}{dc_1} =\frac {1}{6}-\frac{3}{10}2c_1$
$0=\frac{1}{6}-\frac{3}{5}c_1$----------(from 7)
$\frac{1}{6}=\frac{3}{5}c_1$
$c_1=\frac{5}{18}$
Put $c_1$ value in equation (4)
$\bar y(x)=\frac{5}{18} x(1-x)$

and 2 others joined a min ago.