| written 6.7 years ago by | • modified 5.5 years ago |
Determine,
(a) Boundary layer thickness
(b) Local coefficient of drug
(c) Check whether the flow is attached or not.
| written 6.7 years ago by | • modified 5.5 years ago |
Determine,
(a) Boundary layer thickness
(b) Local coefficient of drug
(c) Check whether the flow is attached or not.
| written 6.7 years ago by |
Data:-
$f(\eta)=\frac{3n}{2}-\frac{n^3}{2}$; $\eta =\frac{y}{\rho}$ & $f(\eta)=\frac{u}{U}$
To find:-
(a) $\rho =?$
(b) $C_D*=?$
(c) To check whether the flow is attached or not=?
Solution:-
(a) From given data,
$\frac{u}{U}=(\frac{3}{2}\frac{y}{\rho})-\frac{1}{2}(\frac{y}{\rho})^3$
$\frac{u}{U}=\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3}$..................(1)
Momentum Thickness $\theta$
$\theta=\int _0^{\rho}\frac{u}{U}[1-\frac{u}{U}]dy$
$=\int _0^{\rho}\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3}[1-(\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3})]dy$
$=\int _0^{\rho}\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3}[1-\frac{3y}{2\rho}+\frac{y^3}{2\rho ^3}]dy$
$=\int _0^{\rho}[\frac{3y}{2\rho}-\frac{9y^2}{4\rho ^2}+\frac{3y^4}{4\rho ^4}-\frac{1}{2}\frac{y^3}{\rho ^3}+\frac{3y^4}{4\rho ^4}-\frac{1}{4}\frac{y^6}{\rho …