| written 6.7 years ago by | • modified 6.7 years ago |
$(D^2 – 3D + 2) y = 2e^x sin (\frac{x}{2})$
Subject : Applied Mathematics 2
Topic : Linear Differential Equations With Constant Coefficients and Variable Coefficients Of Higher Order
Difficulty: High
| written 6.7 years ago by | • modified 6.7 years ago |
$(D^2 – 3D + 2) y = 2e^x sin (\frac{x}{2})$
Subject : Applied Mathematics 2
Topic : Linear Differential Equations With Constant Coefficients and Variable Coefficients Of Higher Order
Difficulty: High
| written 6.7 years ago by |
Solution:
$\left(D^{2}-3 D+2\right) y=2 e^{x} \sin \left(\frac{x}{2}\right)$
For complementary function,
$\begin{aligned} f(D) &=0 \\ \therefore\left(D^{2}-3 D+2\right) &=0 \end{aligned}$
Roots are: D = 2,1 $\quad$ Real roots,
$ \mathbf{ y_{c}=c_{1} e^{x}+c_{2} e^{2 x} }$
For particular integral,
$\begin{aligned} y_{p} &=\frac{1}{f(D)} X \\ &=\frac{1}{\left(D^{2}-3 D+2\right)} 2 e^{x} \sin \left(\frac{x}{2}\right) \\ &=2 e^{x} \frac{1}{(D+1)^{2}-3(D+1)+2} \sin \left(\frac{x}{2}\right) \\ &=2 e^{x} \frac{1}{\left(D^{2}-D\right)} \sin \left(\frac{x}{2}\right) \\ &=2 e^{x} \frac{1}{-\left(\frac{1}{4}\right)-D} \sin \left(\frac{x}{2}\right) \\ &=-8 e^{x} \frac{1}{4 D+1} \sin \left(\frac{x}{2}\right) \\ &=-8 e^{x} \frac{4 D-1}{16 D^{2}-1} \sin \left(\frac{x}{2}\right) \\ \therefore y_{p} &= \frac{8}{5} e^{x}\left(-\sin \left(\frac{x}{2}\right)-2 \cos \left(\frac{x}{2}\right)\right) \end{aligned}$
The general solution of given diff. eqn is given by,
$\mathbf{ \quad y_{c}=y_{c}+y_{p}=c_{1} e^{x}+c_{2} e^{2 x}+\frac{8}{5} e^{x}\left(-\sin \left(\frac{x}{2}\right)-2 \cos \left(\frac{x}{2}\right)\right) }$