| written 6.7 years ago by | • modified 6.7 years ago |
Subject : Applied Mathematics 2
Topic : Linear Differential Equations With Constant Coefficients and Variable Coefficients Of Higher Order
Difficulty: High
| written 6.7 years ago by | • modified 6.7 years ago |
Subject : Applied Mathematics 2
Topic : Linear Differential Equations With Constant Coefficients and Variable Coefficients Of Higher Order
Difficulty: High
| written 6.7 years ago by | • modified 6.7 years ago |
Solution:
$(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos (\log (1+x))$
Put $\quad x+1=v \quad \Rightarrow \quad \frac{d v}{d x}=1$
$\frac{d y}{d x}=\frac{d y}{d v}$
The given ean changes to.
$v^{2} \frac{d^{2} y}{d v^{2}}+v \frac{d y}{d v}+y=4 \cos \log v$
Now put $\log v=z \quad \therefore v=e^{z}$
$[D(D-1)+D+1] y=4 \cos z$
$\therefore\left(D^{2}+1\right) y=4 \cos z$
For complementary solution,
$f(D)=0$
$\therefore\left(D^{2}+1\right)=0$
Roots are : $\mathrm{i},-\mathrm{i}$
The complementary solution of given diff. eqn is,
$\therefore y_{c}=c_{1} \cos z+c_{2} \sin z$
For particular integral,
$y_{p}=\frac{1}{f(D)} X=\frac{1}{\left(D^{2}+1\right)} 4 \cos z=4 \frac{z}{2} \sin z=2 \mathbf{z} \sin \mathbf{z}$
$\therefore y_{p}=2 z \sin z$
The general solution of given diff. eqn is given by,
$y_{g}=y_{c}+y_{p}=c_{1} \cos z+c_{2} \sin z+2 z \sin z$
Resubstitute z and v
$y_{g}=c_{1} \cos [\log (x+1)]+c_{2} \sin [\log (1+x)]+2 \log (1+x) \sin [\log (1+x)]$