0
927views
Evaluate $\int^1_0 x^5 sin^{-1} x \ dx$ and find the value of $\beta (\frac{9}{2} , \frac{1}{2})$
1 Answer
| written 6.7 years ago by |
Solution:
$I=\int_{0}^{1} x^{5} \sin ^{-1} x d x$
Put $\sin ^{-1} x=t \quad \therefore x=\sin t d x=\cos t d t$
When $x=0, t=0 \quad$ when $x=1, t=\pi / 2$
$I=\int_{0}^{\pi / 2} \sin ^{5} t . t . \cos t d t=\int_{0}^{\pi / 2} t\left(\sin ^{5} t . \cos t\right) d t$
Integrating by parts,
$I=\left[t \cdot \frac{\sin ^{6} x}{6}\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \frac{\sin ^{6} x}{6} .1 . d t$
$I=\left(\frac{\pi}{2} \cdot \frac{1}{6}-0\right)-\frac{1}{6} \cdot \frac{5.3 .1}{6.4 .2} \cdot \frac{\pi}{2}$
$I=\frac{\pi}{12}-\frac{5 \pi}{192}$
$\therefore I=\frac{11 \pi}{192}$