written 5.4 years ago by |
If the side clearance angle is 15 degree and discharge through nozzle is $0.1 m^3/3$
Find :
Power available at the nozzle.
Hydraulic efficiency of turbine.
Solutions :
Given :
1] Diameter of wheel, D = 1.0 m
2] Speed of wheel, N = 1000 r.p.m
$\therefore$ Tangential velocity of the wheel,
$u = \frac{\pi DN}{60}$
$= \frac{\pi \times 1 \times 1000}{60}$
u = 52.36 m/s
3] Net Head, H = 700m
4] Side clearance angle, $\theta = 15$ degree
5] Discharge, $q = 0.1m^3/s$
Velocity of jet at inlet,
$v_1 = cv \sqrt{2gH}$
$= 1 \times \sqrt{2 \times 9.81 \times 700}$ [cv = 1.0]
$v_1 = 117.19 m/s$
Step No. (1) Power available at the nozzle is given by
$W.P = \frac{W \times H}{1000}$
$= \frac{P \times g \times Q \times H}{1000}$
$= \frac{1000 \times 9.81 \times 1.0 \times 700}{1000}$
= 686.7 kw.
Step No (2) Hydraulic efficiency is given by
$n_h = \frac{2 (v_1 - u) (1 + coz \phi ) u}{v_1^2}$
$= \frac{ 2(117.19 - 52.36) (1 + coz 15˚) \times 52.36}{117.19 \times 117.19}$
$= \frac{2 \times 64.83 \times 1.966 \times 52.36}{117.19 \times 117.19}$
= 0.9718
$n_h$ = 97.18%