| written 6.5 years ago by |
Structural Design and Drawing 3 - Dec 18
Civil Engineering (Semester 7)
Total marks: 80
Total time: 3 Hours
INSTRUCTIONS
(1) Answer $Q .1$ or $2,3$ or $4,5$ or $6,7$ or $8,9$ or 10.
(2) Neat sketches must drawn wherever necessary.
(3) Assume suitable data if necessary.
(4) Figures to right indicate full marks.
(5) IS $1343 : 2012,$ IS $1893-2016,$ and $15456 : 2000$ are allowed in examination.
(6) Use of electronic pocket calculator is allowed.
(7) Use of cell phone is prohibited during examination.
DIV class='paper-question'>
OR
If, however the concrete is subjected to additional shortening due to creep and shrinkage and the steel is subjected to relaxation of stress 5$\%$ find the final percentage loss stress in the steel wire. Modular ratio $=$ $5.70,$ creep coefficient = $1.60 .$ Total residual shrinkage strain $=3 \times 10^{4}$ . \lt/div\gt \ltspan class='paper-ques-marks'\gt(6 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt3.a.\lt/b\gt The deck slab of road bridge of span 10 m is a one way PSC slab with parallel post tensioned cables. Force at transfer in each cable is 400 kN. Deck slab is supposed to supporta UDL of 25 kN / mm^{2} . Compressive and tensile stress in concrete at any stage doesn't exceed 12 N/mm\ltsup\gt2\lt/sup\gt and o N/mm\ltsup\gt2\lt/sup\gt respectively. Determine the only depth of slab assuming 20$\%$ prestressing loss. \lt/div\gt \ltspan class='paper-ques-marks'\gt(3 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt3.b.\lt/b\gt Design a post tensioned concrete two way slab 6 m\times 9 m with discontinuous edge to support imposed load of 3 N/mm\ltsup\gt2\lt/sup\gt Cables of 4 wires of 5 mm diameter carrying effective prestressing force of 100 kN are available for use. Design the spacing of the cables in both direction . Assume $\mathrm{F}_{\mathrm{ck}}=40 \mathrm{N} / \mathrm{mm}^{2}, \mathrm{F}=1600 \mathrm{N} / \mathrm{mm}^{2} . \mathrm{E}_{\mathrm{c}}=38 \mathrm{kN} / \mathrm{mm}^{2}$ \lt/div\gt \ltspan class='paper-ques-marks'\gt(7 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt **OR** \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt4.a.\lt/b\gt What are limitations of Direct Design Method for designing of flat slab? \lt/div\gt \ltspan class='paper-ques-marks'\gt(3 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt4.b.\lt/b\gt An end block of a post tensioned beam is 350 mm \times 500 mm . The prestressing force is 900 kN with the tendon placed centrally at the ends. A bearing plate of 200 mm x 200 mm is provided. Check for the bearing stresses developed in concrete whose strength at transfer is 40 N/mm\ltsup\gt2\lt/sup\gt \lt/div\gt \ltspan class='paper-ques-marks'\gt(7 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt5.a.\lt/b\gt Design a RCC T-shaped retaining wall to retain earthen embankment of 4.2 m height above the ground level, Embankment is sloping at an angle of $20^{\circ}$ with horizontal. Unit weight of earth is 18 kN/mm\ltsup\gt3\lt/sup\gt . Angle of repose is $30^{\circ} .$ Good foundation is available at depth of 1.1m below ground level. SBC of soil is 160 kN/mm\ltsup\gt2\lt/sup\gt Coefficient of friction between concrete and soil may betaken as 0.62. Use M20 and Fe415. Sketch reinforcement details. \lt/div\gt \ltspan class='paper-ques-marks'\gt(17 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt **OR** \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt6.a.\lt/b\gt Design L-shaped retaining wall for levelled backfill for following data. Height of retaining wall is 4.62 m angle of internal friction $30^{\circ}$ , unit weight of soil is $18 \mathrm{kN} / \mathrm{m}^{3},$ surcharge load is 20 $\mathrm{kN} / \mathrm{m}^{2}$ and SBC is 180 $\mathrm{kN} / \mathrm{m}^{2}$ . Coefficient of friction between base slab and underlying strata is 0.55 . Draw lateral pressure diagram and details of reinforcement detailing of base and showing curtailment. \lt/div\gt \ltspan class='paper-ques-marks'\gt(17 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt7.a.\lt/b\gt Design of circular water tank using IS code method for 1 lakh litres capacity. The joint between the wall and base of tank is rigid. The tank rests on ground \lt/div\gt \ltspan class='paper-ques-marks'\gt(12 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt7.b.\lt/b\gt Explain the procedure to assess the crack width in flexure in water retaining structures as per latest codal provisions. \lt/div\gt \ltspan class='paper-ques-marks'\gt(5 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt **OR** \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt8.a.\lt/b\gt Design a rectangular tank of capacity $90,000$ litters using approximate method of analysis. The height of water tank including free board 3.3 mm . Tank is resting on firm ground. Use M20 and Fe415. Sketch reinforcement details.
i) LL Intensity = 3 kN/mm2
ii) FF = 0.75 kN/mm2
iii) Thickness of slab = 150 mm
iv) Size of beam = 300 mm x 500 mm
v) Floor to floor height = 4m
vi) Size of column = 300 mm x 600 mm
vii) No. of storeys = 5
viii) Brick wall thickness = 230 mm
ix) Seismic zone = IV
x) Strata is hard available
Assume suitable data if necessary
OR

and 4 others joined a min ago.