0
1.2kviews
General solution for under damped system.
1 Answer
0
23views

Case 3] : General solution for under damped system ( $\xi \lt 1$) :

In this case, general solution is given by equation $x = c_1e^{s1t} + c_2e^{s2t}$

Here, $s_1 = (- \xi + j\sqrt{1-\xi ^2}) w_n$

$s_2 = ( -\xi - j \sqrt{1 - \xi ^2}) w_n$

where $j = \sqrt{-1}$ is the imaginary unit of complex roots.

Substituting these values in above equation, we get,

$x = c_1e ^{[ -\xi + j \sqrt{1-\xi ^2}] w_nt + c_2 e [ -\xi - j \sqrt{1 - \xi ^2}] w_{nt}}$

$= e^{-\xi w_nt [ c_1 e j \sqrt{1- \xi ^2} w_nt + c_2 e -j \sqrt{1 - \xi ^2} w_{nt}]}$

we know $e^{j \theta} \ = \ cos \ \theta \ + \ jsin \ \theta$ and $e^{-j \theta} = cos \ \theta \ - \ j sin \ \theta$

then above equation can be written as:

$x = e^{-\xi w_n t} [ c_1 \ cos ( \sqrt{1 - \xi ^2} w_n t ) + c_1 ^{j sin} ( \sqrt{1-\xi ^2} w_{nt} )]$

$[ c_2 cos (\sqrt{1-\xi ^2} w_{nt} )] - jc_2^{sin} (\sqrt {1-\xi ^2} w_{nt} )]$

$x = e^{-\xi w_n} [ (c_1 + c_2) cos (\sqrt{ 1 - \xi ^2} w_{nt}) + j (c_1 - c_2) \times sin ( \sqrt{1 - \xi ^2} w_{nt})]$

In above equation, the constants $(c_1 + c_2)$ and $(c_1 - c_2)$ are real quantities which make $c_1$ and $c_2$ complex conjugate quantities.

Hence, above quantities can be replaced by constants A and B respectively.

then displacement equation for under damped system is written as

$x = e^{-\xi w_n t} [ A \ cos \ ( ( \sqrt{1-\xi ^2} w_{nt} ) + B \ sin\ \sqrt{ 1 - \xi ^2} w_{nt})]$ - - - (1)

where A and B can be found out by using boundary condition.

At t = 0, $x = x_0$ - - - (1)

At t = 0, $x = x_0$ - - - - (2)

Substituting (1) boundary condition in equation (1), we get

$x_0 = A$ - - -(1)

Now differentiating equation (1), we get

$\dot{x} = e^{-\xi wnt} [ - A \ sin \ (\sqrt{1 - \xi ^2} w_{nt} ) \sqrt{1 - \xi ^2} w_n + \ B \ cos \ ( \sqrt{1 - \xi ^2} w_{nt}) \sqrt{1 - \xi ^2} w_n ]$

$+ e^{-wnt} (-\xi w_n) [ A \ cos \ ( \sqrt{1- \eta ^2} w_n + \ B \ cos \ ( \sqrt{1 - \xi ^2} w_{nt} ) \sqrt{1- \xi ^2} w_n ]$

$+ e^{-\xi w_nt} (-\xi w_n) [ A \ cos \ (\sqrt{1- \xi ^2} w_{n t} ) + B \ sin \ (\sqrt{ 1 - \xi ^2} w_{n t} ) ]$

Substituting (2) boundary condition in above equation, we get

$\dot{x_0} = [ B \sqrt{1 - \xi ^2} w_n - \xi n_n \times A $ - - - (2)

Substituting $A = x_0$, we can write

$\dot{x_0} = B \sqrt{1 - \xi ^2} w_n - \xi w_n x_0$

$\therefore$ $B = \frac{x_0 + \xi w_n x_0}{\sqrt{ 1 - \xi ^2 w_n }}$

then general solution for displacement equation is written as

$x = e^{-\xi w_n t }[ A \ cos \ ( \sqrt{1 - \xi^2} w_{nt} ) + B \ sin \ ( \sqrt{1 - \xi ^2} w_{nt} ) ]$

Above equation can be written as

$x = e^{-\xi w_nt} [ A \ cos \ (w_dt) + B \ sin \ (w_dt)]$ - - -(a)

Above equation of displacement can be written as

$x = e^{-\xi w_n t} [ X \ sin \ (w_dt + \phi)]$

Above equation can be written as

$x = e^{-\xi w_n t } [ X \ sin \ (w_dt) \ cos \ (\phi) + X \ cos \ (w_dt) \ sin \ (\phi)]$ - - -[b]

comparing (a) and (b), we get

A = X sin $\phi$

B = X cos $\phi$

$\therefore$ $tan \phi = \frac{A}{B} $ and hence $X = \sqrt{A^2 + B^2}$

Then response curve for under damped system is shown below where the displacement decreases exponentially with respect to time.

enter image description here

From the above graph, it can be said that maximum amplitude $x_e^{-\xi w_nt}$ decays exponentially with respect to time and also as the damping ratio $\xi$ increases for given system displacement decreases.

Please log in to add an answer.