written 5.9 years ago by |
1] $K E \ = \ \frac{1}{2} \ I_o \dot{θ}^2$
$= \frac{1}{2} \ [ \frac{mL^2}{12} \ + \ \frac{ml^2}{16}]^ \ \dot{θ}^2$
$Ieq \ = \ \frac{ml^2}{12} \ + \ \frac{ml^2}{16}$
2] $PE \ = \ \frac{1}{2} \ \times \ k \ \times \ (\frac{3L}{4} \ \theta)^2$
$= \frac{1}{2} \ ( k \ \times \ \frac{9L^2}{16}) \ \theta^2$
$Keq \ = \ \frac{9KL^2}{16}$
3] Work done = $- \ \int \ c \dot{y} \ dy$
$= \ - \int \ C. \ \frac{L}{4} \ \dot{θ}. \ d \ (\frac{L}{4} \theta)$
$= \int \ \frac{CL^2}{16} \ \dot{θ} \ d \ \theta$
$Ceq \ = \ \frac{CL^2}{16}$
4] $Meq \ = \ Fo. \ \frac{L}{4} \ - \ Mo$
$Ieq \ \ddot{θ} \ + \ C \ eq \ \dot{θ} \ + \ K \ eq . \ \theta \ = \ Meq . \ sin \ wt$
$0.145 \ mL^2 \ \ddot{θ} \ + \ \frac{CL^2}{16} \ \theta \ + \ \frac{9kL^2}{16} \ \theta = [ \frac{foL}{4} \ = \ Mo] \ sin \ wt$