written 5.3 years ago by |
If the system is initially at rest and a velocity of 10cm $s^{-1}$ is imparted to the mass. Determine
1.the displacement and velocity of the mass as a lime function.
2.The displacement at t = 1 sec. Now, if an excitation force of (24 sin 15t) N is applied to the mass, find the steady state response of the system.
m = 20kg
Fo = 24N
W = 15 r/sec
K = $8 \ \times \ 10^3 \ N/m$
C = 130 Ns/m
$\dot{x}$ = $10 \ \times \ 10^{-2} \ m/sec$
1] Expression for x and x in terms of t.
2] Find x at t = 1 sec
3] SSA = x = ?
1] $\xi \ = \ \frac{c}{c_e} = \frac{130}{2 \times 20 \times \sqrt{ \frac{8 \times 10^3}{20}}}$
$\xi \ = \ 0.1625 \ \lt \ 1$
$\therefore$ system is under damped.
$\therefore$ displacement for $\xi \lt 1$ is given by
$x = x [ \frac{e^{-\xi w_nt}}{u} \ sin \ (wt + \phi)]$ - - - - [1]
Boundary conditions are
1]T = 0, x = 0
2] T = 0, $\dot{x}$ = $10 \times \ 10^{-2}$ m/sec
Using first boundary condition,
$0 \ = \ X \ sin \ \phi$
As $X \ = \ \neq \ 0$
$Sin \ \phi \ = \ 0$
$\phi \ = \ 0 $
$\dot{x} = \ x [sin \ (w_d t) (- \xi . w_n).e^-\xi w_nt + e^{-\xi w_nt} cos (w_d. t) . w_d]$ - - - [2]
$10 \times 10^{-2} = x [w_d]$
$10 \times 10^{-2} = x$
$w_n = \sqrt{ 1 - \xi ^2}$
$\frac{10 \times 10^{-2}}{20 \sqrt{ 1 – (0.1625)^2}} = X$
$X = 5.067 \times 10^{-3} m$
Substitute $\phi$ and X in equation [1]
$x = 5067 \times 10^{-3} [ e^{-325t} \ sin \ (19.7st)]$ - - - - [3]
From equation [2]
$\dot{x} = 5.067 \times 10^{-3} [ sin \ (19.73t)e^{-3.25t} \times (-3.25) + e^{-3.25t} \times cos(19.73t) \times 19.73]$
2] From equation 3, at t = 1 sec
$x = 5.067 \times 10^{-3} [0.038 \times sin \ 19.73]$
$x = 6.63 \times 10^{-3} m$
3] $\frac{x}{X_{st}} = \frac{1}{\sqrt{ (1-r^2)^2 + (2 \xi r)^2}}$
$r = \frac{w}{w_n} = \frac{15}{20} = 0.75$
$X_{st} = \frac{f_o}{k} = \frac{24}{8 \times 10^3} = 3 \times 10^{-3} \ m$
$\frac{X}{3 \times 10^{-3}} = \frac{1}{\sqrt{ (1 – (0.75)^2 + (2 \times 0.1625 \times 0.75)^2}}$
$= 5.99 \times 10^{-3} \ m$