written 5.2 years ago by |
The tail section is connected to the main body of the helicopter by an eccentric structure, The natural frequency of a tail section is observed as 135 rad/sec, During flight the rotor operates at 900 rpm, What is the vibration amplitude of the tail section if one of the blades falls off during rotation?
Assume a damping ratio of 0.05.
m = 28.5 kg
mo = 2.3 kg
e = 0.17 m
Wn1 = 135 r/sec when there are 4 blades.
w = 94.24 r/sec.
Find : X = SSA when one blade falls down at 900 rpm.
Case 1: When there are 4 blades.
$w_{n1} = \sqrt{ \frac{K_eq}{m + 4 mo}}$
$135 = \sqrt{ \frac{K_eq}{28.5 + 4 \times 2.3}}$
$K_{eq} = 687.08 \times 10^3$ N/m
Case 2: when one blade falls down.
$w_{n2} \sqrt{ \frac{keq}{m + 3mo}}$
$w_{n2} = \sqrt{ \frac{687.08 \times 10^3}{28.5 + 3 \times 2.3}} = 139.31$ r/sec.
$\frac{x}{\frac{mo.e}{m + 3mo}} = \frac{r^2}{\sqrt{ (1-r^2)^2 + (2 \zeta r)^2}}$
$\frac{X}{\frac{2.3 \times 0.17}{28.5 + 3 \times 2.3}} = \frac{ [ \frac{2 \pi (900)}{60}]^2/ 139.3}{\sqrt{(1- 0.6785)^2 + (2 \times 0.05 \times 0.676)^2}}$
X = 9.22 mm
Case 3: forced vibration with support excitation.
1] Analyze the problems of figure for steady state.
2] Response of the mass.
ANSLOM,
If = $\sum$ of all forces
$+ \ m\ddot{x} \ = \ - c(\dot{x}-\dot{y})- kx \ $
m$\ddot{x}$ + c$(\dot{x}-\dot{y})$ + kx = 0
m$\ddot{x}$ + c$\dot{x}$ - c$\dot{y}$ + kx = 0
m$\ddot{x}$ + c$\dot{x}$ + kx = c$\dot{y}$
m$\ddot{x}$ + c$\dot{x}$ + kx = c $y_0$ w cos wt
m$\ddot{x}$ + c$\dot{x}$ + kx = c $y_0 w [sin \ wt \ + \ \frac{\pi }{2}]$
Std form:
m$\ddot{x}$ + c$\dot{x}$ + kx = Fo sin wt
Fo = c$y_0$w
$\frac{X}{X_{st}} = \frac{1}{\sqrt{ (1-r^2)^2 + (2 \xi r)^2}}$
$X = \frac{\frac{c Y_o w}{k}}{\sqrt{(1-r^2)^2 + (2 \xi r)^2}}$
ANSLOM,
IF = $\sum$ all ext. forces.
m$\ddot{x}$ = - c$\dot{x}$ - k (x - y)
m$\ddot{x}$ + c$\dot{x}$ + k(x-y) = 0
m$\ddot{x}$ + c$\dot{x}$ + kx – ky = 0
m$\ddot{x}$ + c$\dot{x}$ + kx = ky
m$\ddot{x}$ + c$\dot{x}$ + kx = k (Yo sin wt)
m$\ddot{x}$ + c$\dot{x}$ + kx = kYo. Sin wt.
We know that
m$\ddot{x}$ + c$\dot{x}$ + kx = Fo sin wt.
Fo = k.Yo
$\frac{X}{Xst} - \frac{1}{\sqrt{ (1-r^2)^2 + (2 \xi r)^2}}$
$X = \frac{ \frac{k. \ Yo}{k}}{\sqrt{(1-r^2)^2 + (2 \xi r)^2}}$
$\frac{X}{Yo} = \frac{1}{\sqrt{ (1-r^2)^2 + (2 \xi r)^2}}$