0
924views
Derive the equation of motion and find the steady state displacement of mass m.
1 Answer
written 5.3 years ago by |
ANSLOM,
m$\ddot{x}$ = -k (x – y) – kx – c$\dot{x}$
m$\ddot{x}$ + c$\dot{x}$ + kx + k (x – y) = 0
m$\ddot{x}$ + c$\dot{x}$ + kx + kx = ky
m$\ddot{x}$ + c$\dot{x}$ + 2kx = ky sin wt
We know that
m$\ddot{x}$ + c$\dot{x}$ + kx = Fo sin wt
Fo = ky
Keq = 2k
$\frac{X}{X_{st}} = \frac{1}{\sqrt{(1-r^2)^2 + (2 \xi r)^2}}$
$X = \frac{ky}{\frac{2k}{\sqrt{(1-r^2)^2 + (2 \xi r)^2}}}$
$\frac{X}{Y} = \frac{\frac{1}{2}}{\sqrt{(1-r^2)^2 + (2 \xi r)^2}}$