The rodd surface varies sinusoidally with an amp of 0.05 m and a wave length of 6 m.
Given:
M = 1200 kg
K = 400 KN/m = $400 \times 10^3$ N/m
$\xi$ = 0.5
V = 20 km/hr = $\frac{20 \times 10^3}{3600} = 5.55$ m/s
Y = 0.05m
$\lambda$ = 6m
Amp ratio is given by,
$\frac{x}{y} = \frac{\sqrt{1 + (2 \xi r)^2}}{\sqrt{ (1-r^2)^2 + (2 \xi r)^2}}$
$r = \frac{w}{Wn}$
$Wn = \sqrt{k/m} = \sqrt{ \frac{400 \times 10^3}{1200}} = 18.25$ rad/s
$w = 2 \pi f$
$f = \frac{v}{x} = \frac{(20 \times 1000/3600)}{6} = 0.925$ Hz
$w = 2 \pi \times 0.925 = 5.82$ rad/sec
$r = \frac{5.82}{18.25} = 0.31878$
$\frac{x}{0.05} = \frac{1.049}{0.9532}$
X = 0.0550 m